Digital Audio and Speech Processing (IN4182)

An Introduction to Multi-Microphone Speech Enhancement

Richard C. Hendriks

12/5/2020

Delft University of Technology

Speech Enhancement - Project

- Project is compulsory and carried out in groups of 2-3 students
- Evaluation is done during the exam (hand in report) Project:
- Design and build at least a single-microphone speech enhancement system. You are free to extend this to a multi-microphone system.
 - Use matlab (or simulink)
 - The speech enhancement system should consist of a gain function, noise PSD estimator and speech PSD estimator.
 - Perform an evaluation of the speech enhancement system Bonus:
 - Implement a multi-microphone system

Target Estimate

• Wiener gain:
$$\hat{s}_k(l) = \frac{\sigma_S^2}{\sigma_S^2 + \sigma_N^2} y_k(l)$$

•
$$\hat{s}_k(l) = E[S|y] = g(\sigma_N^2, \sigma_S^2, y, \nu, \gamma) y_k(l)$$

• power spectral subtraction

Target (speech) PSD Estimator:

- Maximum likelihood (based on Bartlett estimate)
- Decision-directed approach

- Voice activity detector
- Minimum statistics
- MMSE based with speech presence uncertainty.
 TUDelft

Single-Mic. Noise Reduction

- With a single-microphone noise reduction algorithm, filtering is limited to temporal-spectral filtering.
- If more microphones are available, it is also possible to sample the sound field spatially (rather than only temporal sampling). This in addition allows to perform spatial filtering.

Multi-Microphone Noise Reduction

Multi-Microphone Noise Reduction

Today:

- Concept of beamforming
- Signal models
- Derivation of multi-microphone noise reduction algorithms:
 - Sum & delay beamformer
 - MVDR beamformer
 - Multi-channel Wiener filter
 - LCMV beamformer
- Room impulse response and the acoustic transfer function

Spatial Sampling

An important aspect of beamforming is the fact that by putting multiple microphones in a space, we sample the sound field.

This is analogous to temporal sampling. Hence, we have to deal with similar concepts as with temporal filtering, e.g.,

- Spatial aliasing
- Beamformer response (frequency response)
- Correlation between samples

11 **TU**Delft

Concept of Beamforming

- Consider a sinusoidal source at 40 degrees of a dual microphone array (d=0.17 m).
- The sound source is in the far field (sound waves can be considered parallel)

Concept of Beamforming

Concept of Beamforming – Freq. domain

Notice that delays are typically non-integer. To efficiently implement non-integer delays, beamformers can be implemented in the frequency domain. Notice:

- The response is frequency dependent. (In reality we do not have a single sinusoid, but broadband signals each experiencing a frequency dependent delay).
- We have to deal with spatial aliasing (the equivalent of temporal aliasing): $d < \frac{1}{2}\lambda_{min} < \frac{1}{2}\frac{c}{\frac{1}{2}f_s} = \frac{c}{f_s}$.

Concept of Beamforming – Freq. domain $d = 0.03 < \frac{1}{2}\lambda_{min} = \frac{1}{2}\frac{c}{f_{max}}.$ Example: • Sum and delay beamformer $f_{max} = 5.6 \text{ kHz}$ • Target at 60 degrees spatial aliasing • two microphones 0.5 🤤 • *d* = 0.03 50 100 response of 1 at 60 degrees ¹⁵⁰ 10000 8000 200 6000 250 300 4000 350 2000 For low frequencies, less spatial selectivity

Concept of Beamforming – Freq. domain

Sampling a sound source with multiple microphones results in a measured source with different delay (and damping) on each microphone.

Let us initially assume the damping is the same for all microphones (source is thus in the far-field).

What is then the effect of a delay τ on the frequency domain description of the signals and how to exploit this?

Concept of Beamforming – Freq. domain

Let us assume that microphone 1 is the reference microphone. The second microphone then experiences a delay τ .

A delay τ in time-domain means a multiplication in frequency domain with $e^{-j2\pi k\tau/N}$: $s(n-\tau) \Leftrightarrow S_k e^{-j2\pi k\tau/N}$ $s_{2,k}(l) = S_k(l)e^{-j2\pi k\tau/N}$ Source s_1 M_2 M_1 $S_{1,k}(l) = S_k(l)$

How to exploit spatial filtering?

$$\hat{S}_k(l) = \frac{Y_{1,k}(l) + Y_{2,k}(l)e^{j2\pi\frac{k\tau}{N}}}{2} = S_k(l) + \frac{N_{1,k}(l) + N_{2,k}(l)e^{j2\pi\frac{k\tau}{N}}}{2}$$

- If the noise sources come from different angles as the speech source, the noise DFT coefficients $N_{1,k}(l)$ and $N_{2,k}(l)$ will be added destructively.
- If the noise is uncorrelated across microphones, i.e., $E[N_{1,k}(l)N_{2,k}^*(l)] = 0$, this operation involving two microphones will reduce the variance with a factor 2 (or three dB).
- This beam former is called the "delay and sum beamformer", after the two operations that are applied.

Signal models – near field

When sources travel to the microphones, the distance from source to each microphone influences the experienced damping and phase of the measured signal: $k = k \pi$

$$S_k(l) \Rightarrow S_k(l)ae^{-j2\pi \frac{k\tau}{N}}.$$

Depending on the size of the array and the distance of the array to the source, this gives rise to two different signal models:

- Near-field:
 - The source is close to the center of the array. The experienced damping is therefore different for every microphone.
 - Damping (a inversely proportional with distance) and phase differences τ are taken into account.

Signal models – far field

- Far-field:
 - The source is far away from the center of the array. The waves travel therefore parallel. The microphones experience no difference in damping.

– Only phase differences τ are taken into account.

$$S_k(l) \Rightarrow S_k(l)e^{-j2\pi\frac{k\tau}{N}}$$

Delay & Sum Beamformer

- Exploits the fact that the signal reaching the microphones are delayed with respect to each other.
- Changing the phase steers the beam towards the target.
- Takes only the direction of the target into account and neglects knowledge of the noise field completely.

Delay & Sum Beamformer

Assuming near-field, \mathbf{Y}_k for a linear array consists of

$$\begin{aligned} \mathbf{Y}_{k} &= \left[Y_{1,k}(l), \dots, Y_{M,k}(l)\right]^{T} \\ &= \left[S_{1,k}(l) + N_{1,k}(l), S_{1,k}(l) \frac{a_{2}e^{-j2\pi\frac{k\tau_{1}}{N}}}{a_{1}} + N_{2,k}(l), \dots, S_{1,k}(l) \frac{a_{M}e^{-j2\pi\frac{k\tau_{M}}{N}}}{a_{1}} + N_{M,k}(l)\right]^{T} \end{aligned}$$

Choosing the first microphone as the reference, we can set $\mathbf{d}_k = [1, \frac{a_2 e^{-j2\pi \frac{k\tau_2}{N}}}{a_1}, ..., \frac{a_M e^{-j2\pi \frac{k\tau_M}{N}}}{a_1}]^T.$ Notice we can use \mathbf{d}_k to write

$$\mathbf{Y}_k = S_{1,k}(l)\mathbf{d}_k + \mathbf{N}_k$$

and calculate

$$\hat{S}_k(l) = \frac{\mathbf{d}^H \mathbf{Y}_k(l)}{\mathbf{d}^H \mathbf{d}}.$$
 Near field: $\mathbf{w}_k(l) = \frac{\mathbf{d}}{\mathbf{d}^H \mathbf{d}}$

Far-field:
$$\mathbf{w}_k(l) = \frac{1}{M}\mathbf{d}$$

Delay & Sum Beamformer

Delay and sum

- preserves the target.
- does not take explicit knowledge on the noise field into account.
- reduces the noise variance in most ideal case (uncorrelated noise across microphones) with a factor $\frac{1}{M} = \frac{1}{2^p} \Rightarrow -p10 \log_{10}(2) \approx -3p \ dB$

More advanced beamformers not only exploit position of target, but position of noise sources as well. Well-known adaptive beamformer is the minimum variance distortionless response (MVDR) beamformer

- Constrains the beamformer to have no change of magnitude and phase in direction of target source.
- Minimizes the variance of the beamformer output in all other directions.

Cost function: $J(\mathbf{w}_k) = \mathbf{w}_k^H(l)\mathbf{R}_{Y,k}(l)\mathbf{w}_k(l)$

Use the constraint: $\mathbf{d}_{k}^{H}\mathbf{w}_{k}(l) = 1 = -\mathbf{d}_{k}^{H}\left(\mathbf{R}_{Y,k}(l)\right)^{-1}\lambda\mathbf{d}_{k}$

$$\Rightarrow \lambda = -\frac{1}{\mathbf{d}_{k}^{H} \left(\mathbf{R}_{Y,k}(l)\right)^{-1} \mathbf{d}_{k}} \Rightarrow \mathbf{w}_{k}(l) = \frac{\left(\mathbf{R}_{Y,k}(l)\right)^{-1} \mathbf{d}_{k}}{\mathbf{d}_{k}^{H} \left(\mathbf{R}_{Y,k}(l)\right)^{-1} \mathbf{d}_{k}}$$

MVDR - beamformer
$$\mathbf{w}_{k}(l) = \frac{\left(\mathbf{R}_{Y,k}(l)\right)^{-1} \mathbf{d}_{k}}{\mathbf{d}_{k}^{H} \left(\mathbf{R}_{Y,k}(l)\right)^{-1} \mathbf{d}_{k}}$$

The MVDR beamformer can also be written using the noise correlation matrix $\mathbf{R}_{N,k}(l)$ based on the matrix inversion lemma:

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^T)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}}$$

Matrix $\mathbf{R}_{Y,k}(l)$ can be written as $\mathbf{R}_{Y,k}(l) = \mathbf{R}_{N,k}(l) + \mathbf{dd}^H \sigma_{S,k}^2(l)$

$$\mathbf{w}_{k}(l) = \frac{\mathbf{R}_{N,k}(l)^{-1}\mathbf{d}_{k}\left(1 - \frac{\mathbf{d}_{k}^{H}\mathbf{R}_{N,k}(l)^{-1}\mathbf{d}_{k}\sigma_{S,k}^{2}(l)}{1 + \mathbf{d}^{H}\mathbf{R}_{N,k}(l)^{-1}\mathbf{d}_{k}\sigma_{S,k}^{2}(l)}\right)}{\mathbf{d}^{H}\mathbf{R}_{N,k}(l)^{-1}\mathbf{d}_{k}\left(1 - \frac{\mathbf{d}_{k}^{H}\mathbf{R}_{N,k}(l)^{-1}\mathbf{d}_{k}\sigma_{S,k}^{2}(l)}{1 + \mathbf{d}^{H}\mathbf{R}_{N,k}(l)^{-1}\mathbf{d}_{k}\sigma_{S,k}^{2}(l)}\right)} = \frac{\mathbf{R}_{N,k}(l)^{-1}\mathbf{d}_{k}}{\mathbf{d}_{k}^{H}\mathbf{R}_{N,k}(l)^{-1}\mathbf{d}_{k}\sigma_{S,k}^{2}(l)}$$

$$\mathbf{w}_k(l) = \frac{\mathbf{R}_{Y,k}^{-1}(l)\mathbf{d}_k}{\mathbf{d}_k^H \mathbf{R}_{Y,k}^{-1}(l)\mathbf{d}_k} = \frac{\mathbf{R}_{N,k}^{-1}(l)\mathbf{d}_k}{\mathbf{d}_k^H \mathbf{R}_{N,k}^{-1}(l)\mathbf{d}_k}$$

This holds under the assumption that 1) target is rank-1 2) target and noise are uncorrelated and 3) target and noise are additive

MVDR – Spatially uncorrelated noise

$$\mathbf{w}_k(l) = \frac{\mathbf{R}_{N,k}(l)^{-1}\mathbf{d}_k}{\mathbf{d}_k^H \mathbf{R}_{N,k}(l)^{-1}\mathbf{d}_k}$$

If the noise field is spatially uncorrelated, i.e., $\mathbf{R}_{N,k}(l) = \sigma_{N,k}^2(l)\mathbf{I}_M$, the MVDR equals the delay and sum beamformer

$$\mathbf{w}_k(l) = \frac{\mathbf{R}_{N,k}(l)^{-1}\mathbf{d}_k}{\mathbf{d}_k^H \mathbf{R}_{N,k}(l)^{-1}\mathbf{d}_k} = \frac{\mathbf{d}_k}{\mathbf{d}_k^H \mathbf{d}_k}$$

(assuming far-field):

$$\mathbf{w}_k(l) = \frac{\mathbf{d}_k}{M}$$

Signal model: $\mathbf{Y}_k(l) = S_{1,k}(l)\mathbf{d}_k(l) + \mathbf{N}_k(l)$

Cost function: $J_{MSE}(\mathbf{w}_k) = E[||S_{1,k}(l) - \mathbf{w}_k^H \mathbf{Y}_k(l)||_2^2]$

$$\frac{dJ_{MSE}(\mathbf{w}_k)}{d\mathbf{w}_k^H} = -E[S_{1,k}(l)^H \mathbf{Y}_k(l)] + \mathbf{R}_{Y_k}(l)\mathbf{w}_k = -\sigma_{S,k}^2 \mathbf{d}_k(l) + \mathbf{R}_{Y_k}(l)\mathbf{w}_k$$
$$\mathbf{w}_k = \mathbf{R}_{Y_k}^{-1}(l)\sigma_{S,k}^2 \mathbf{d}_k(l)$$

Using again the Matrix inversion lemma, it can be shown that

$$\mathbf{w}_k = R_{\mathbf{Y}_k}^{-1}(l)\sigma_{S,k}^2 \mathbf{d}_k(l)$$

can be written as

$$\mathbf{w}_{k} = \underbrace{\frac{\sigma_{S,k}^{2}(l)}{\sigma_{S,k}^{2}(l) + (\mathbf{d}_{k}^{H}(l)R_{\mathbf{N}_{k}}^{-1}\mathbf{d}_{k}(l))^{-1}}_{\text{Single-channel Wiener}} \underbrace{\frac{R_{\mathbf{N}_{k}}^{-1}(l)\mathbf{d}_{k}(l)}{\mathbf{d}_{k}^{H}(l)R_{\mathbf{N}_{k}}^{-1}\mathbf{d}_{k}(l)}}_{MVDR}$$

matrix inversion lemma:

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^T)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}}$$

Matrix $\mathbf{R}_{Y,k}(l)$ can be written as $\mathbf{R}_{Y,k}(l) = \mathbf{R}_{N,k}(l) + \mathbf{dd}^H \sigma_{S,k}^2(l)$

$$\begin{aligned} \mathbf{R}_{Y,k}^{-1}(l)\mathbf{d}_{k}\sigma_{S,k}^{2}(l) &= \left(\mathbf{R}_{N,k}(l) + \mathbf{d}_{k}\mathbf{d}_{k}^{H}\sigma_{S,k}^{2}(l)\right)^{-1}\mathbf{d}_{k}\sigma_{S,k}^{2}(l) \\ &= \mathbf{R}_{N,k}(l)^{-1}\mathbf{d}_{k}\sigma_{S,k}^{2}(l) - \mathbf{R}_{N,k}^{-1}(l)\mathbf{d}_{k}\frac{\sigma_{S,k}^{2}(l)\mathbf{d}_{k}^{H}\mathbf{R}_{N,k}^{-1}(l)\mathbf{d}_{k}}{1 + \sigma_{S,k}^{2}(l)\mathbf{d}^{H}\mathbf{R}_{N,k}^{-1}(l)\mathbf{d}_{k}}\sigma_{S,k}^{2}(l) \\ &= \mathbf{R}_{N,k}^{-1}(l)\mathbf{d}_{k}\left(1 - \frac{\sigma_{S,k}^{2}(l)\mathbf{d}_{k}^{H}\mathbf{R}_{N,k}^{-1}(l)\mathbf{d}_{k}}{1 + \sigma_{S,k}^{2}(l)\mathbf{d}^{H}\mathbf{R}_{N,k}^{-1}(l)\mathbf{d}_{k}}\right)\sigma_{S,k}^{2}(l) \end{aligned}$$

$$= \mathbf{R}_{N,k}^{-1}(l)\mathbf{d}_{k} \left(1 - \frac{\sigma_{S,k}^{2}(l)\mathbf{d}_{k}^{H}\mathbf{R}_{N,k}^{-1}(l)\mathbf{d}_{k}}{1 + \sigma_{S,k}^{2}(l)\mathbf{d}^{H}\mathbf{R}_{N,k}^{-1}(l)\mathbf{d}_{k}}\right)\sigma_{S,k}^{2}(l)$$

$$= \mathbf{R}_{N,k}(l)^{-1}\mathbf{d}_{k} \left(\frac{\sigma_{S,k}^{2}(l)}{1 + \sigma_{S,k}^{2}(l)\mathbf{d}^{H}\mathbf{R}_{N,k}(l)^{-1}\mathbf{d}_{k}}\right)$$

$$= \frac{\mathbf{R}_{N,k}(l)^{-1}\mathbf{d}_{k}}{\mathbf{d}^{H}\mathbf{R}_{N,k}^{-1}(l)\mathbf{d}_{k}} \left(\frac{\mathbf{d}^{H}\mathbf{R}_{N,k}^{-1}(l)\mathbf{d}_{k}\sigma_{S,k}^{2}(l)}{1 + \sigma_{S,k}^{2}(l)\mathbf{d}^{H}\mathbf{R}_{N,k}^{-1}(l)\mathbf{d}_{k}}\right)$$

$$= \frac{\mathbf{R}_{N,k}^{-1}(l)\mathbf{d}_{k}}{\mathbf{d}^{H}\mathbf{R}_{N,k}^{-1}(l)\mathbf{d}_{k}} \left(\frac{\sigma_{S,k}^{2}(l)}{\left(\mathbf{d}^{H}\mathbf{R}_{N,k}^{-1}(l)\mathbf{d}_{k}\right)^{-1} + \sigma_{S,k}^{2}(l)}\right)$$

$$\mathbf{w}_{k} = \underbrace{\frac{\sigma_{S,k}^{2}(l)}{\sigma_{S,k}^{2}(l) + (\mathbf{d}_{k}^{H}(l)R_{\mathbf{N}_{k}}^{-1}\mathbf{d}_{k}(l))^{-1}}_{\text{Single-channel Wiener}} \underbrace{\frac{R_{\mathbf{N}_{k}}^{-1}(l)\mathbf{d}_{k}(l)}{\mathbf{d}_{k}^{H}(l)R_{\mathbf{N}_{k}}^{-1}\mathbf{d}_{k}(l)}}_{MVDR}$$

The multi-channel Wiener filter can thus be seen as a concatenation of two filters:

- An MVDR as spatial filter
- Single-Channel Wiener filter as post-processor where noise variance is set to the remaining noise PSD after beamforming: $\mathbf{d}_k^H(l) R_{\mathbf{N}_k}^{-1} \mathbf{d}_k(l)$

Example: Multi-Channel Noise Reduction

LCMV - beamformer

Remember the MVDR: $J(\mathbf{w}_k) = \mathbf{w}_k^H(l)\mathbf{R}_{Y,k}(l)\mathbf{w}_k(l)$

$$min_{\mathbf{w}_k} J$$
$$s.t.\mathbf{w}_k^H \mathbf{d}_k = 1.$$

- The MVDR imposes one constraint.
- This can be generalised to having d constraints.

LCMV - beamformer

Cost function:
$$J(\mathbf{w}_k) = \mathbf{w}_k^H(l)\mathbf{R}_{Y,k}(l)\mathbf{w}_k(l)$$

 $min_{\mathbf{w}_k}J$
 $s.t.\mathbf{w}_k^H\mathbf{\Lambda}_k = \mathbf{f}^H.$

with $\mathbf{\Lambda} \in \mathbb{C}^{M imes d}$

When d < M, there is a closed form solution:

$$\mathbf{w}_k = \mathbf{R}_{\mathbf{Y},\mathbf{k}}^{-1} \mathbf{\Lambda}_{\mathbf{k}} \left(\mathbf{\Lambda}_{\mathbf{k}}^{\mathbf{H}} \mathbf{R}_{\mathbf{Y},\mathbf{k}}^{-1} \mathbf{\Lambda}_{\mathbf{k}} \right)^{-1} \mathbf{f}.$$

LCMV - beamformer

$$\mathbf{w}_{k} = \mathbf{R}_{\mathbf{Y},\mathbf{k}}^{-1} \mathbf{\Lambda}_{\mathbf{k}} \left(\mathbf{\Lambda}_{\mathbf{k}}^{\mathbf{H}} \mathbf{R}_{\mathbf{Y},\mathbf{k}}^{-1} \mathbf{\Lambda}_{\mathbf{k}} \right)^{-1} \mathbf{f}.$$

How to use the multiple constraints?

- To steer zeros in the direction of certain noise sources.
- To maintain the signal from certain directions.
- To maintain the spatial cues of for hearing aids.

Notice that the more constraints are used, less degrees of freedom are left to control the noise reduction.

Overview of Discussed filters

• Delay and sum beamformer

$$\mathbf{w}_k(l) = rac{\mathbf{d}_k}{\mathbf{d}_k^H \mathbf{d}_k}$$

• MVDR beamformer

$$\mathbf{w}_{k}(l) = \frac{\left(\mathbf{R}_{Y,k}(l)\right)^{-1} \mathbf{d}_{k}}{\mathbf{d}_{k}^{H} \left(\mathbf{R}_{Y,k}(l)\right)^{-1} \mathbf{d}_{k}} = \frac{\left(\mathbf{R}_{N,k}(l)\right)^{-1} \mathbf{d}_{k}}{\mathbf{d}_{k}^{H} \left(\mathbf{R}_{N,k}(l)\right)^{-1} \mathbf{d}_{k}}$$

• Multi-Channel Wiener

$$\mathbf{w}_{k} = \underbrace{\frac{\sigma_{S,k}^{2}(l)}{\sigma_{S,k}^{2}(l) + (\mathbf{d}_{k}^{H}(l)R_{\mathbf{N}_{k}}^{-1}\mathbf{d}_{k}(l))^{-1}}_{\text{Single-channel Wiener}} \underbrace{\frac{R_{\mathbf{N}_{k}}^{-1}(l)\mathbf{d}_{k}(l)}{MVDR}}_{MVDR}$$
41

Overview of Discussed filters

• LCMV beamformer

$$\mathbf{w}_k = \mathbf{R}_{\mathbf{Y},\mathbf{k}}^{-1} \mathbf{\Lambda}_{\mathbf{k}} \left(\mathbf{\Lambda}_{\mathbf{k}}^{\mathbf{H}} \mathbf{R}_{\mathbf{Y},\mathbf{k}}^{-1} \mathbf{\Lambda}_{\mathbf{k}}
ight)^{-1} \mathbf{f}.$$

Acoustic Transfer Function

Remember that the steering vector (for an arbitrary setup) and free field, \mathbf{d}_k is given by

$$\mathbf{d}_k = [1, \frac{a_2 e^{-j2\pi \frac{k\tau_2}{N}}}{a_1}, ..., \frac{a_M e^{-j2\pi \frac{k\tau_M}{N}}}{a_1}]^T.$$

- The τ_m 's in \mathbf{d}_k essentially model the delays that the source experiences from source position to microphone.
- Remember that a delay τ in time, implies a phase change $e^{-j2\pi\frac{k\tau}{N}}$ in DFT domain.

Acoustic Transfer Function

- In general, if there is no free field, there is not only a direct path, but also reflections.
- In general, $\mathbf{d}_{m,k}$ is known as the DFT transform of the room impulse response h(n), also known as the acoustic transfer function.

