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Learning objectives

After today you will

• Be able to explain what speech is
• Know the goal, basic architecture and workings of an

automatic speech recognition (ASR) system
• Know how ASR systems are evaluated and how well they

perform
• The limitations of an ASR
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What is speech?



4

Speech
• Speech = sound = differences in air pressure
• Perceived as different phone(me)s, phone(me) sequences, 

words

speech signal
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Some terminology
• Words: sequences of phonemes

• Phoneme: the smallest contrastive linguistic unit that 
distinguishes meaning, e.g.,    tip vs. dip

• Allophone: a variation of a phoneme, e.g.,     phot vs. spot

• Phone: a distinct speech sound
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The speech production system

Vocal tract
• Area between vocal cords and lips
• Pharynx + nasal cavity + oral cavity 

and lungs
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3 steps to produce sounds

step 3: articulation = 
distortion of air
= speech

step 2: phonation

step 1: initiation
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Fun fact

None of the speech production
components are specifically
made for speaking!
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Speech sounds

• Vowels: unblocked air stream

• Consonants: constricted or blocked air stream
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Different sounds: Vowels

• Tongue height:
– Low: e.g., /a/
– Mid: e.g., /e/
– High: e.g., /i/

• Tongue advancement:
– Front : e.g., /i/
– Central : e.g., /ə/
– Back : e.g., /u/

• Lip rounding:
– Unrounded: e.g., /ɪ, ɛ, e, ǝ/
– Rounded: e.g.,  /u, o, ɔ/

English vowel quadrant
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Different sounds: Consonants

• Place of articulation
Where is the constriction?

• Manner of articulation
– Stops: /p, t, k, b, d, g/
– Fricatives: /f, s, S, v, z, Z/
– Affricates: /tS, dZ/
– Approximants/Liquids: /l, r, w, j/
– Nasals: /m, n, ng/

• Voicing
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• https://www.youtube.com/watch?v=DcNMCB-Gsn8

Recorded in 1962, Ken Stevens
Source: YouTube

Speech sound production
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The physical speech signal consists of

… acoustic energy

… varying over time in amplitude and spectral shape
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Each sound has its own spectral shape

bu t     o   nM o   n  d     ay
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Demos of speech sound manipulations

• http://jontalle.web.engr.illinois.edu/Public/InterspeechDemosAug2
5.13/da_to_ga_f103.m4v

• http://jontalle.web.engr.illinois.edu/Public/InterspeechDemosAug2
5.13/ka_to_ta_f103.m4v

• http://jontalle.web.engr.illinois.edu/Public/InterspeechDemosAug2
5.13/Sa2sa2cha2za2Da.m4v

http://jontalle.web.engr.illinois.edu/Public/InterspeechDemosAug25.13/da_to_ga_f103.m4v
http://jontalle.web.engr.illinois.edu/Public/InterspeechDemosAug25.13/ka_to_ta_f103.m4v
http://jontalle.web.engr.illinois.edu/Public/InterspeechDemosAug25.13/Sa2sa2cha2za2Da.m4v
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3 important aspects of speech
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Quiz 1: Count the words

Each picture shows a waveform of a short stretch of speech:
C

D
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Quiz 1: Count the words

Each picture shows a waveform of a short stretch of speech:
C

D

A: Electromagnetically (1)
B: Emma loves her mum’s yellow marmelade (6)
C: See you in the evening (5)
D: Attachment (1)
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Electromagnetically

Why is it so hard to determine the number of words?

/i l ɛktromæ g nɛt ɪ k ǝli/

silence ≠ word boundary
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Quiz 2: Spot the odd one out

• Below are three waveforms each containing a single word:
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Quiz 2: Spot the odd one out

• Below are three waveforms each containing a single word:

A3 (brother, brother, mother)

Every time you produce a word it sounds differently
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Enormous variability

Speaker-dependent:

• Speaker differences, e.g., gender, vocal tract length, age

• Speaker idiosyncracies, e.g., lisp, creaky voice

• Accent: dialects, non-nativeness

Speaker-independent:

• Background noise
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Enormous variability

Speaker-independent:

• Coarticulation: production of a speech sound becomes more like 
that of a preceding/following speech sound, e.g.
– Place of articulation: garden bench gardem bench

(anticipatory or regressive coarticulation)
– Voicing: cats vs. dogz (carryover coarticulation)

• Speaking style
– Formal
– Read
– Informal, conversational reductions
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Reductions

eigenlijk (actually)
/Eix@nl@k/
/Eix@ l@k/
/Eix l@k/
/Ei k/

natuurlijk (of course) 
/natyrl@k/
/naty l@k/
/   ty  l@k/
/   ty      k/
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Summary of 3 important aspects

• Speech signal is continuous

• No clear pauses between words

• Highly variable

Task for the ASR system:
Map the highly variable, continuous speech signal onto
discrete units such as words
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Automatic speech recognition
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Automatic speech recognition

Task: Automatic conversion of the speech signal into a 
sequence of written words

• Input = ordered, time-continuous sequence
• Output = ordered text sequence

Goal: Do this under a variety of listening and speaker 
conditions, with the least possible number of recognition errors
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Related tasks

• Speech understanding: generating a semantic representation 

• Speaker recognition: identifying the person who spoke 

• Speech detection: separating speech from non-speech 

• Speech enhancement: improve the intelligibility of a signal 

• Speech compression: encode speech signal for transmission 
or storage with a small amount of bits 
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Siri -
Apple
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The noisy channel

Figure from Jurafsky and Martin, edition 2
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Two big problems

• Speech is highly variable, will never exactly match any
model we have for the sentence

• We need a metric to determine the “best match”
 Probability  Bayesian inference

• Set of all sentences is huge
• We need an efficient algorithm that does not search 

through all possible sentences but only the most likely
ones

 Search or decoding problem
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Goal ASR

Find the most likely sentence W out of all
sentences in the language L given some acoustic
input X

P(X|W) • P(W)
Bayes Theorem: argmax P(W|X) = P(X)



34

ASR system

Speech recognition is the problem of deciding on 
• How to represent the signal
• How to model the constraints (P(X|W) and P(W))
• How to search for the most optimal answer (P(W|X))

Slide partially based on slide by James Glass, MIT

Acoustic 
models

Acoustic pre-
processing

Search space

Lexicon

Language 
model

Recognised words
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How to represent the speech signal
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Acoustic pre-processing

= Computation of acoustic feature vectors of the 
speech signal

 Mel-frequency cepstral coefficients

Acoustic 
models

Acoustic pre-
processing

Search space

Lexicon

Language 
model

Recognised words
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How to model the constraints

1. Acoustic model: to model the constraints inherent to
the speech signal

2. Lexicon: to model the constraints on the order of 
sounds in a language
 Determined by the words of a language

3. Language model: to model the constraint inherent 
to word order in the language
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How to obtain P(X|W)?

• Derive an estimate of the probability that a particular 
recognition unit W generated a particular stretch of speech X

 P(X|W)

• P = probability
• W = word
• X = sequence of acoustic vectors (typically MFCCs)

Bayes Theorem: argmax P(W|X) = ( P(X|W) • P(W) )

Acoustic 
models

Acoustic pre-
processing

Search space

Lexicon

Language 
model

Recognised words
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Acoustic models

In large vocabulary ASR systems:
• A word consists of multiple phones

For instance: P( X | tree ) 
= P( X | /t/ ) • P( X | /r/ ) • P( X | /ee/ )

 Derive an estimate of the probability that a 
particular recognition unit Phone generated a 
particular stretch of speech X  P(X|Phone)
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ae a: I ei:

g b n tm s

vowels

consonants

…

…

To compute p(X|phone)  Hidden Markov Models

Acoustic 
models

Acoustic pre-
processing

Search space

Lexicon

Language 
model

Recognised words



41

Hidden Markov Models

• HMMs can deal with the variability in pronunciations and
duration of the speech signal

• Temporal warping of the speech signal is easily done using 
HMMs, through self-loops

• Assign a probability to an ambiguous sequence of 
observations, e.g., a sequence of speech vectors

Slide adapted from Jurafsky & Martin
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Hidden Markov Models (HMMs)

• Statistical model used to calculate p(X|phone)
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Hidden Markov Models

• A set of states: Q = q1, q2…qm; the state at time t is qt

• Start and end state, not associated with observations
• A set of transition probabilities: A = a01a02…an1…ann

• aij = the probability of transitioning from state i to state j
• A set of observations: Y = y01y02…yn1…ynn

• A set of observation likelihoods (or emission probabilities): 
B = bi(yt) or bi(ot)

• First-order Markov assumption: 
Current state only depends on previous 
state
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A very simple HMM

• One state per phone
• Left-to-right
• Typically no state skipping
• Self-loops allow for modelling phone duration
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Multiple states per phone

• Each phone modelled by 3 states + Start + End
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An HMM with 3 states per phone
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P(X|W)

Figure from Shimodaira & Renals, 2017
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Mapping of acoustic features to phones

• The observations (o) (or y below) are the MFCC vectors
• 1 MFCC vector for each frame
• Many MFCC vectors mapped onto one HMM state
• But which MFCC vector is mapped onto which HMM 

state?
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Which state are we in?

For any given observation of [s ih k s], we could be in 
multiple states

o1 o2 o3 o4 o5 o6 o7 o8 oT
s s s ih ih ih k k s
s s ih ih ih k s s s
s ih ih k k k k k s
...

We do not know the mapping, but that is not important

Slide adapted from Jurafsky & Martin
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Training

• Calculate likelihood of a given state q generating an
observation o, i.e., the MFCC feature
= emission probability bj(o)
= acoustic likelihood of a frame 
calculated on the basis of a large corpus

• Transition probabilities: from the lexicon
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The emission probability: bj(o)
= likelihood of an observation o (MFCC) given a subphone
state q
• MFCC vectors are real-valued numbers
 Cannot compute the likelihood of a given state (phone) 
generating an MFCC vector by counting the number of times 
each such vector occurs

Can be trained from data using:
• Gaussian mixture models
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How do we train the acoustic models?

o1      o2       o3

We have We need

• We need to discover the means and standard 
deviations of the Gaussians, using HMMs
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Hidden Markov Models

• Remember: the states of an HMM “are” the Gaussian mixture 
models = B
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How to model the constraints

1. Acoustic model: to model the constraints inherent to the
speech signal

2. Lexicon: to model the constraints on the order of sounds in a 
language
 Determined by the words of a language

3. Language model: to model the constraint inherent to word 
order in the language
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face
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b ae d
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Lexicon

Acoustic 
models

Acoustic pre-
processing
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Lexicon
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Out-of-vocabulary words

• Words in the test corpus that are not included in the lexicon

• OOVs cannot be recognised

• The OOV rate (%) is a lower bound for the word error rate 
 Every OOV word leads to at least one recognition error; 

average is about 2 errors per OOV word

• Why not add all possible words into the lexicon?
 Increase in confusability  Increase in the #errors
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How to model the constraints

1. Acoustic model: to model the constraints inherent to the
speech signal

2. Lexicon: to model the constraints on the order of sounds in a 
language
 Determined by the words of a language

3. Language model: to model the constraint inherent to word 
order in the language
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• P(W) = probability of a 
(sequence of) particular
recognition unit(s) occurring

I
you
a

have
am

person
life 
full

pleasant

I am
you are

pleasant person
full life

am a

unigram

bigram

Language model

Acoustic 
models

Acoustic pre-
processing

Search space

Lexicon

Language 
model

Recognised words
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Training a Language Model

• Choose a language source

• Choose a training set

• Determine the vocabulary

• Estimate the necessary probabilities:
P(W) = Raw count of W/Total number of running words

• Typically used LMs are 4-, 5-, N-grams
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Decoding
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How to search for the most optimal answer: 
Decoding
What is the most likely sentence out of all sentences in the 
language L given some acoustic input X?
= argmax P(W|X) = ( P(X|W) • P(W) )

Output: rank-ordered N-best list of most likely word sequences

Acoustic 
models

Acoustic pre-
processing

Search space

Lexicon

Language 
model

Recognised words
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Decoding

• Task: simultaneously segmenting the utterance into words 
and identifying each of these words

• Often done using the Viterbi algorithm

Example: What are the words in this sequence of phones?

[ay d ih s hh er d s ah m th ih ng ax b aw m uh v ih ng r ih s en l ih]
(From Jurafsky and Martin, second edition)

Answer: I just heard something about moving recently

• Why is it so hard to segment the speech and identify the 
words?
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Evaluation and performance
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Evaluation

• On unseen data (to check generalisability of the ASR system)

• Dynamic programming to align the ASR output with a 
reference transcription 

• Three types of error: insertion, deletion, substitution 

• Word error rate (WER) takes all three types of error into 
account
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Evaluation

Spoken:
„and that was rather interesting for us as well“

Recognized: 
„and that a was father interesting for as well“

substitution insertion deletion

1 deletion + 1 insertion + 1 substitution
WER =  100% • 9 spoken words = 33.3%



66Slide from: https://www.nist.gov/itl/iad/mig/rich-transcription-evaluation



67Slide from: https://www.economist.com/technology-quarterly/2017-05-01/language
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Limitations of an ASR

• Can you name some?
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Limiting factors of ASR

• Continuous signal

• Size of the task:
– Size of the lexicon
– Perplexity of the lexicon

• Acoustic environment: 
– Background noise 
– Competing speakers/Overlapping speech
– Channel conditions (microphone, phone line, room acoustics) 

• Speaking style: 
– Isolated words vs. continuous speech
– Planned speech vs. spontaneous conversation (reductions)

• Speaker:
− Accents
− Speaker noises 
− Speaking rate
− Emotional state
− Gender
− Size
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Summary

• ASR = finding the most likely sequence of words given the 
acoustic signal

• 3 information sources: acoustic models, language models, 
lexicon  model the constraints of the search space

• Segmentation of the speech signal follows from speech 
recognition

• ASR systems require lots of annotated data, task-dependent
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Limitations of ASR – watch at your own
leisure

https://www.youtube.com/watch?v=BOUTfUmI8vs
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