Automatic speech recognition

Dr. Odette Scharenborg Multimedia Computing Group Intelligent Systems / Computer Science

OScharenborg

Learning objectives

After today you will

- Be able to explain what speech is
- Know the goal, basic architecture and workings of an automatic speech recognition (ASR) system
- Know how ASR systems are evaluated and how well they perform
- The limitations of an ASR

What is speech?

Speech

- Speech = sound = differences in air pressure
- Perceived as different phone(me)s, phone(me) sequences, words

speech signal

Some terminology

- Words: sequences of phonemes
- Phoneme: the smallest contrastive linguistic unit that distinguishes meaning, e.g., *tip* vs. *dip*
- Allophone: a variation of a phoneme, e.g., *p^hot* vs. *spot*
- Phone: a distinct speech sound

The speech production system

Vocal tract

- Area between vocal cords and lips
- Pharynx + nasal cavity + oral cavity

and lungs

3 steps to produce sounds

step 3: articulation =
distortion of air
= speech

step 2: phonation

step 1: initiation

Fun fact

None of the speech production components are specifically made for speaking!

Speech sounds

- Vowels: unblocked air stream
- Consonants: constricted or blocked air stream

Different sounds: Vowels

Simple & Glided Vowels

- Tongue height:
 - Low: e.g., /a/
 - Mid: e.g., /e/
 - High: e.g., /i/
- Tongue advancement:
 - Front : e.g., /i/
 - Central : e.g., /ə/
 - Back : e.g., /u/
- Lip rounding:
 - Unrounded: e.g., /I, ϵ , e, ə/
 - Rounded: e.g., /u, o, ɔ/

English vowel quadrant

ŤUDelft

Different sounds: Consonants

- Place of articulation
 Where is the constriction?
- Manner of articulation
 - Stops: /p, t, k, b, d, g/
 - Fricatives: /f, s, S, v, z, Z/
 - Affricates: /tS, dZ/
 - Approximants/Liquids: /I, r, w, j
 - Nasals: /m, n, ng/
- Voicing

Speech sound production

https://www.youtube.com/watch?v=DcNMCB-Gsn8

Recorded in 1962, Ken Stevens Source: YouTube UDelft The physical speech signal consists of

... acoustic energy

... varying over time in amplitude and spectral shape

Each sound has its own spectral shape

bu t o nM o n d ay

Demos of speech sound manipulations

<u>http://jontalle.web.engr.illinois.edu/Public/InterspeechDemosAug2</u>
 <u>5.13/da_to_ga_f103.m4v</u>

<u>http://jontalle.web.engr.illinois.edu/Public/InterspeechDemosAug2</u>
 <u>5.13/ka to ta f103.m4v</u>

<u>http://jontalle.web.engr.illinois.edu/Public/InterspeechDemosAug2</u>
 <u>5.13/Sa2sa2cha2za2Da.m4v</u>

3 important aspects of speech

ŤUDelft

Quiz 1: Count the words

Each picture shows a waveform of a short stretch of speech:

Quiz 1: Count the words

Each picture shows a waveform of a short stretch of speech:

- A: Electromagnetically (1)
- B: Emma loves her mum's yellow marmelade (6)
- C: See you in the evening (5)

D: Attachment (1)

Delft

Electromagnetically

Why is it so hard to determine the number of words?

silence ≠ word boundary

Quiz 2: Spot the odd one out

• Below are three waveforms each containing a single word:

Quiz 2: Spot the odd one out

• Below are three waveforms each containing a single word:

Every time you produce a word it sounds differently

TUDelft

A3 (brother, brother, mother)

Enormous variability

Speaker-dependent:

- Speaker differences, e.g., gender, vocal tract length, age
- Speaker idiosyncracies, e.g., lisp, creaky voice
- Accent: dialects, non-nativeness

Speaker-independent:

Background noise

Enormous variability

Speaker-independent:

- Coarticulation: production of a speech sound becomes more like that of a preceding/following speech sound, e.g.
 - Place of articulation: garden bench → gardem bench (anticipatory or regressive coarticulation)
 - Voicing: cats vs. dogz (carryover coarticulation)
- Speaking style
 - Formal
 - Read
 - Informal, conversational \rightarrow reductions

Reductions

natuurlijk (of course)

/natyrl@k/ /naty l@k/ / ty l@k/

/ ty k/

eigenlijk (actually) /Eix@nl@k/ /Eix@ l@k/ /Eix l@k/ /Ei k/

Summary of 3 important aspects

- Speech signal is continuous
- No clear pauses between words
- Highly variable

Task for the ASR system:

Map the highly variable, continuous speech signal onto discrete units such as words

Automatic speech recognition

Automatic speech recognition

Task: Automatic conversion of the speech signal into a

- Input = ordered, time-continuous sequence
- Output = ordered text sequence

Goal: Do this under a variety of listening and speaker conditions, with the least possible number of recognition errors

Related tasks

- Speech understanding: generating a semantic representation
- Speaker recognition: identifying the person who spoke
- Speech detection: separating speech from non-speech
- Speech enhancement: improve the intelligibility of a signal
- Speech compression: encode speech signal for transmission or storage with a small amount of bits

Speech to text conversion powered by machine learning

I TRY IT FREE

Google ASSISTANT

echo dot

Add Alexa to any room

Powerful Speech Recognition

Google Cloud Speech API enables developers to **convert audio to text** by applying **powerful neural network models** in an easy to use API. The API **recognizes over 110 languages and variants**, to support your global user base. You can transcribe the text of users dictating to an application's microphone, enable command-and-control through voice, or transcribe audio files, among many other use cases. **Recognize audio uploaded in the request**, and integrate with your audio storage on Google Cloud Storage, by using the same technology Google uses to power its own products.

Figure from Jurafsky and Martin, edition 2

JDelft

Two big problems

- Speech is highly variable, will never exactly match any model we have for the sentence
- We need a metric to determine the "best match"
- \rightarrow Probability \rightarrow Bayesian inference
- Set of all sentences is huge
- We need an efficient algorithm that does not search through all possible sentences but only the most likely ones
- \rightarrow Search or decoding problem

Find the **most likely sentence** *W* **out of all sentences** in the language *L* given some acoustic input *X*

Speech recognition is the problem of deciding on

- How to *represent* the signal
- How to model the constraints (P(X|W) and P(W))
- How to search for the most optimal answer (P(W|X))

Slide partially based on slide by James Glass, MIT

How to represent the speech signal

Acoustic pre-processing

= Computation of acoustic feature vectors of the speech signal

→ Mel-frequency cepstral coefficients

How to model the constraints

- 1. Acoustic model: to model the constraints inherent to the speech signal
- 2. Lexicon: to model the constraints on the order of sounds in a language
 - \rightarrow Determined by the words of a language
- 3. Language model: to model the constraint inherent to word order in the language

How to obtain P(X|W)?

- Derive an estimate of the probability that a particular recognition unit W generated a particular stretch of speech X
- $\rightarrow P(X|W)$
- P = probability
- *W* = word
- X = sequence of acoustic vectors (typically MFCCs)

TUDelft Bayes Theorem: argmax P(W|X) = (P(X|W) • P(W))

Acoustic models

In large vocabulary ASR systems:

• A word consists of multiple phones

→ Derive an estimate of the probability that a particular recognition unit *Phone* generated a particular stretch of speech $X \rightarrow P(X|Phone)$

TUDelft

Hidden Markov Models

- HMMs can deal with the variability in pronunciations and duration of the speech signal
- Temporal warping of the speech signal is easily done using HMMs, through self-loops
- Assign a probability to an ambiguous sequence of observations, e.g., a sequence of speech vectors

Hidden Markov Models (HMMs)

Statistical model used to calculate p(X|phone)

TUDelft

Hidden Markov Models

- A set of states: $Q = q_1, q_2...q_m$; the state at time t is q_t
- Start and end state, not associated with observations
- A set of transition probabilities: $A = a_{01}a_{02}...a_{n1}...a_{nn}$
- a_{ii} = the probability of transitioning from state i to state j
- A set of observations: $Y = y_{01}y_{02}...y_{n1}...y_{nn}$
- A set of observation likelihoods (or emission probabilities):
 B = b_i(y_t) or b_i(o_t)
- First-order Markov assumption:
 Current state only depends on previous state

Markov Model $1^{a_{12}}$ $2^{a_{23}}$ $3^{a_{34}}$ $4^{a_{45}}$ $5^{a_{45}}$ Acoustic Vector Sequence $Y = y_1$ y_2 y_3 y_4 y_5

A very simple HMM

- One state per phone
- Left-to-right
- Typically no state skipping
- Self-loops allow for modelling phone duration

Multiple states per phone

Each phone modelled by 3 states + Start + End

An HMM with 3 states per phone

Figure from Shimodaira & Renals, 2017

Delft

Mapping of acoustic features to phones

- The observations (o) (or y below) are the MFCC vectors
- 1 MFCC vector for each frame
- Many MFCC vectors mapped onto one HMM state
- But which MFCC vector is mapped onto which HMM state?

Which state are we in?

For any given observation of [s ih k s], we could be in multiple states

- - -

We do not know the mapping, but that is not important **TUDelft** Slide adapted from Jurafsky & Martin

Training

- Calculate likelihood of a given state q generating an observation o, i.e., the MFCC feature
 - = emission probability $b_i(0)$
 - = acoustic likelihood of a frame calculated on the basis of a large corpus
- Transition probabilities: from the lexicon

The emission probability: $b_j(0)$

= likelihood of an observation o (MFCC) given a subphone state q

• MFCC vectors are real-valued numbers

→ Cannot compute the likelihood of a given state (phone) generating an MFCC vector by counting the number of times each such vector occurs

Can be trained from data using:

• Gaussian mixture models

How do we train the acoustic models?

 We need to discover the means and standard deviations of the Gaussians, using HMMs

Hidden Markov Models

 Remember: the states of an HMM "are" the Gaussian mixture models = B

How to model the constraints

- 1. Acoustic model: to model the constraints inherent to the speech signal
- Lexicon: to model the constraints on the order of sounds in a language
 - \rightarrow Determined by the words of a language
- **3.** Language model: to model the constraint inherent to word order in the language

Lexicon

ŤUDelft

Out-of-vocabulary words

- Words in the test corpus that are not included in the lexicon
- OOVs cannot be recognised
- The OOV rate (%) is a lower bound for the word error rate
- Every OOV word leads to at least one recognition error; average is about 2 errors per OOV word
- Why not add all possible words into the lexicon?
- \rightarrow Increase in confusability \rightarrow Increase in the #errors

How to model the constraints

- 1. Acoustic model: to model the constraints inherent to the speech signal
- Lexicon: to model the constraints on the order of sounds in a language
 Determined by the words of a language
 - \rightarrow Determined by the words of a language
- 3. Language model: to model the constraint inherent to word order in the language

ŤUDelft

Training a Language Model

- Choose a language source
- Choose a training set
- Determine the vocabulary
- Estimate the necessary probabilities:
 P(W) = Raw count of W/Total number of running words
- Typically used LMs are 4-, 5-, N-grams

ŤUDelft

Decoding

How to *search* for the most optimal answer: Decoding

What is the **most likely sentence** out of all sentences in the language *L* given some acoustic input X? = $\operatorname{argmax} P(W|X) = (P(X|W) \cdot P(W))$

Output: rank-ordered *N*-best list of most likely word sequences

Decoding

- Task: simultaneously segmenting the utterance into words and identifying each of these words
- Often done using the Viterbi algorithm

Example: What are the words in this sequence of phones?

[ay d ih s hh er d s ah m th ih ng ax b aw m uh v ih ng r ih s en l ih] (From Jurafsky and Martin, second edition)

Answer: I just heard something about moving recently

Why is it so hard to segment the speech and identify the words?

Evaluation and performance

Evaluation

- On *unseen* data (to check generalisability of the ASR system)
- Dynamic programming to align the ASR output with a reference transcription
- Three types of error: insertion, deletion, substitution
- Word error rate (WER) takes all three types of error into account

Evaluation

Spoken:

"and that was rather interesting for us as well"

Recognized:

"and that a was father interesting for as well"

substitution insertion deletion

1 deletion + 1 insertion + 1 substitutionWER = 100% •9 spoken words= 33.3%

ŤUDelft

NIST STT Benchmark Test History – May. '09

Speech-recognition word-error rate, selected benchmarks, % Log scale 100 Switchboard Switchboard cellular Meeting speech Broadcast IBM, Switchboard speech 10 5.9% Microsoft, Switchboard The Switchboard corpus is a collection of recorded telephone conversations widely used to train and test speech-recognition systems 1 1993 02 96 98 2000 06 04 08 10 12 14 16 Sources: Microsoft; research papers

Loud and clear

Delft

Human vs. machine word recognition performance

□ASR

Increasing task difficulty

TUDelft Data: =< 1997: Lippman, 1997. Figure extended from: Moore, 2003.

Limitations of an ASR

• Can you name some?

Limiting factors of ASR

- Continuous signal
- Size of the task:
 - Size of the lexicon
 - Perplexity of the lexicon
- Acoustic environment:
 - Background noise
 - Competing speakers/Overlapping speech
 - Channel conditions (microphone, phone line, room acoustics)
- Speaking style:
 - Isolated words vs. continuous speech
 - Planned speech vs. spontaneous conversation (reductions)

- Speaker:
 - Accents
 - Speaker noises
 - Speaking rate
 - Emotional state
 - Gender
 - Size

Summary

- ASR = finding the most likely sequence of words given the acoustic signal
- 3 information sources: acoustic models, language models, lexicon → model the constraints of the search space
- Segmentation of the speech signal follows from speech recognition
- ASR systems require lots of annotated data, task-dependent

Limitations of ASR – watch at your own leisure

TUDelft https://www.youtube.com/watch?v=BOUTfUml8vs