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PREFACE

This reader contains the course material for the 4-th/5-th year undergraduate course on signal
processing for communications at TU Delft, ET4 147. The course centers around two main top-
ics: wireless communications and array signal processing. Both areas are currently experiencing
a rapid evolution, caused, e.g., by new possibilities from the use multiple sensors and by the fact
that computationally intensive algorithms are no longer a bottleneck.

An example of this, in mobile communications, is the recent “discovery” that the use of adaptive
antennas enables the separation of multiple signals that have the same frequency, as long as
these arrive from different locations or otherwise have distinctive propagation paths. In the
same manner, echos caused by multipath can be detected and suppressed. By using the strong
structural properties of digital signals, an array calibration is not necessary, and only a few
dozen samples are needed. Algebraic techniques play an important role in the separation of
signals.

The leading theme in the course is to demonstrate how modern mathematical techniques, mostly
from linear algebra, can be applied to solve emerging problems in these areas. It is assumed
that the participants already have a fair background in linear algebra, although one lecture is
spent to refresh this knowledge. The course material is derived in part from previously published
papers, by several authors, but edited to fit the course.

Alle-Jan van der Veen
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Chapter 1

THE WIRELESS CHANNEL

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Antenna array receiver model . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Physical channel properties . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Signal modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Data model for signal processing . . . . . . . . . . . . . . . . . . . . . 26

1.6 Applications of space-time processing . . . . . . . . . . . . . . . . . . 33

Wireless communications is currently experiencing a dramatic evolution. The unprecedented
growth of existing services, and the emergence of many new ones, creates interesting and chal-
lenging opportunities for signal processing. In this course, a review is given of a number of
signal processing algorithms that will be of value in this area. A good understanding of the
applicability and potential of such algorithms, however, requires a suitable data model to start
with. The model should be based on reality but not be overly detailed. The purpose of this
chapter is to derive such a model.

1.1 INTRODUCTION1

The radio age began just over one hundred years ago with the invention of the radio telegraph
by Guglielmo Marconi. After steady but mostly unremarkable progress, an important change of
gears occured in the 1990s. The rapid evolution in radio technology results in new and improved
services at lower costs. This in turn generates an expanding number of subscribers to wireless
services. Wireless revenues are currently growing at around 40% per year and these trends are
likely to continue for several years. An (incomplete) list of wireless applications is given in table
1.1. In this course, we will be mostly concerned with signal processing techniques for cellular
applications.

1From Paulraj and Papadias [1].
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2 The wireless channel

Table 1.1. Applications of wireless technology

Personal Communications Systems (PCS)

Mobile communications (GSM, CDMA)

Analog and digital cellular systems

Cordless phones

Messaging systems

Hand pagers

Satellite Communications and Navigation

Mobile satellite services

Global positioning system (GPS)

VSAT

Cellular communications

Wireless Data

Wireless PDAs (GPRS, EDGE, UMTS)

Wireless local-area networks (WLANs)

Wide-area networks

Dual-Use Applications

Direction-finding radar

Commercial spread-spectrum

Radio astronomy
RF Identification (RFID)

Inventory control and tracking

Personnel and plant security

Automatic vehicle identification (toll)

Debit/credit systems

Automotive and Transportation Electronics

Collision-avoidance/warning systems

In-vehicle navigation systems

Intelligent-vehicle highway systems (IVHS)

A wireless designer is faced with a number of challenges. These include a complicated and rapidly
varying propagation environment, limited availability of radio spectrum, limited energy storage
capability of batteries in portable units, user demands for higher data rates, voice quality and
longer talk times. The increasing demand for capacity in wireless systems traditionally translates
directly into a demand for more bandwidth, which however is already quite restricted. At the
same time, the infrastructure investment costs are often a limiting factor when deploying a new
system aimed at wide area coverage. Increasing the range of current systems is therefore of great
interest as well.

A number of technologies are being employed to meet such diverse requirements. These include
advanced multiple access techniques, efficient voice and channel coding, and improved signal
processing. For signal processing, a critical issue to be investigated for future systems is advanced
interference reduction, or more ambitiously the joint detection of multiple signals at the same
frequency.

In figure 1.1, the layout of a cellular network is schematically shown. Each user is assigned
to a base station, conceptually the one that is closest in physical distance, but in practice the
one that gives strongest reception. Within a logical cell, there is only one base station. Each
base station has a collection of carrier frequencies at which it can communicate to its users. In
traditional systems, the base stations in directly neighboring cells do not use the same set of
frequencies. A user in a neigboring cell that does use the same frequency can cause interference:
this is called adjacent cell interference (ACI). Similarly, a user in the same cell that happens to
use the same frequency causes co-channel interference (CCI).2 If there is multipath, the base
station can receive a number of echos of the signal of the desired user, from different directions

2Often, no distiction is made between ACI and CCI.
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1.1 Introduction 3

ACI

CCI ISI

desired
user

Figure 1.1. Cellular network concept

and displaced in time, which causes intersymbol interference (ISI).

There are two critical factors in the design of wide area mobile communication systems: coverage
and capacity. These factors have a direct impact on the cost and quality of the services since
spectral resources are limited and spectral efficiency is necessary. The spatial dimension is to
a large extent unexplored in wireless systems. Traditional telecommunication schemes multi-
plex channels in frequency and time, but use the spatial dimension in general only in a very
rudimentary fashion. By incorporating adaptive antenna arrays at the base station, co-channel
interference can be reduced to a large extent by efficient space-time (ST) processing techniques.
This may increase both the capacity, coverage, and quality of future systems. With proper pro-
cessing, it is also possible to multiplex channels in the spatial dimension just as in the frequency
and time dimensions. Spatially selective reception and transmission can reduce interference in
the system significantly, allowing frequencies to be reused more often and thereby increasing
capacity.

The key leverage of space-time signal processing is that this provides significant co-channel
interference reduction, in a way that is not possible with single antenna modems. This is
because co-channel interference and the desired signal almost always arrive at the base station
antenna array with distinct and well separated spatial-temporal signatures. By identifying this
signature for the user-to-base station communication link (uplink or reverse link), the signal
of interest may be extracted from the noise while suppressing interference. Furthermore, with
knowledge of the spatial-temporal signature describing the base station-to-user (downlink or
forward link) channel, transmission schemes may be devised which maximize the power of the
signal of interest at the user while minimizing cochannel interference to other mobiles as well as
overall radiated power. This offers substantial capacity increases over current wireless system
implementations.

The spatial dimension can also be used to enhance other aspects of space-time modem perfor-
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4 The wireless channel
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Figure 1.2. Wireless communication scenario

mance, in particular with regard to diversity. In receive mode, the complicated radio channel
causes the signal arriving at a single antenna to exhibit significant fluctuations in power, both in
the time domain and in frequency. This fading, however, might be quite independent in space,
even over short distances. Thus, properly combining multiple antenna outputs at the base sta-
tion (i.e., space-time equalization) can be used to enhance overall reception and improve signal
to thermal noise ratio, enhance diversity gain and even improve inter-symbol interference sup-
pression. In transmit mode (downlink), the spatial dimension can enhance array gain, improve
transmit diversity and reduce delay spread at the subscriber’s end.

In this chapter, we develop a wireless channel model that can form the basis for the design
of signal processing algorithms for space-time modems. This forms the preparation for the
next few chapters, which go into the details of some of these algorithms. Extensive background
information on channel models and signal modulation can be found in Jakes [2], William Lee [3],
Lee and Messerschmidt [4], Steele [5], Proakis [6], as well as others.

A data model for wireless communication consists of the following parts (see figure 1.2):

1. Source model: signal alphabet, data packets, and modulation by a pulse shape function

2. Physical channel: multipath propagation over the wireless channel

3. Receiver model: reception of multiple signals at multiple antennas, sampling, beamform-
ing, equalization and decision making.

1.2 ANTENNA ARRAY RECEIVER MODEL

For several reasons, it is simplest to discuss the data model in reverse order. Hence, in this
section we start out with making simple models for the receiver, emphasizing the reception of a
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Figure 1.3. Coherent adding of signals

signal at an antenna array consisting of multiple antennas. We only consider linear receivers at
this point.

1.2.1 Introduction

An antenna array may be employed for several reasons. A traditional one is signal enhancement.
If the same signal is received at multiple antennas and can be coherently added, then additive
noise is averaged out. For example, suppose we have a signal u(t) received at M antennas
x1, · · · , xM ,

xm(t) = u(t) + nm(t) , m = 1, · · · , M
where u(t) is the desired signal and nm(t) is noise. Let us suppose that the noise variance is
E[|nm(t)|2] = σ2. If the noise is uncorrelated from each antenna to the others, then by averaging
we obtain

y(t) =
1

M

M∑

m=1

xm(t) = u(t) +
1

M

M∑

m=1

nm(t) = u(t) + n(t)

The noise variance on y(t) is given by E[|n(t)|2] = 1
M σ2. We thus see that there is an array gain

equal to a factor M , the number of antennas.

The reason that we could simply average, or add up the received signals xm(t), is that the
desired signal entered coherently, with the same delay at each antenna. More general, the
desired signal is received at unequal delays and we have to introduce compensating delays to be
able to coherently add them. This requires knowledge on these delays, or the direction at which
the signal was received. The operation of delay-and-sum is known as beamforming, since it can
be regarded as forming a beam into the direction of the source. The delay-and-sum beamformer
acts like an equivalent of a parabolic dish, which physically inserts the correct delays to look in
the desired direction. See figure 1.3.
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Figure 1.4. Nulling out a signal

A second reason to use an antenna array is to introduce a form of spatial filtering. Filtering can
be done in the frequency domain —very familiar—, but similarly in the spatial domain. Spatial
filtering can just be regarded as taking (often linear) combinations of the antenna outputs, and
perhaps delays of them, to reach a desired spatial response.

A prime application of spatial filtering is null steering: the linear combinations are chosen such
that a signal (interferer) is completely cancelled out. Suppose the first antenna receives the signal
u(t), whereas the second antenna receives the signal u(t − τ), see figure 1.4. It is easy to see
how the received signals can be processed to produce a zero output, by inserting a proper delay
and taking the difference. However, even without a delay we can do something. By weighting
and adding the antenna outputs, we obtain a signal y(t) at the output of the beamformer,

y(t) = w1u(t) + w2u(t − τ)

In the frequency domain, this is

Y (ω) = U(ω)(w1 + w2e
−jωτ )

Thus, we can make sure that the signal is cancelled, Y (ω) = 0, at a certain frequency ω0, if we
select the weights such that

w2 = −w1e
jω0τ

Note that (1) if we do not delay the antenna outputs but only scale them before adding, then
we need complex weights, (2) with an implementation using weights, we can cancel the signal
only at a specific frequency, but not at all frequencies.

Thus, for signals that consist of a single frequency, or are narrow band around a carrier frequency,
we can do null steering by means of a phased array. In more general situations, with broadband
signals, we need a beamformer structure consisting of weights and delays. See figure 1.5. How
narrow is narrow-band depends on the maximal delay across the antenna array, as is discussed
next.

ET4 147 (2005): Signal Processing for Communications



1.2 Antenna array receiver model 7

beamformer������� space-time equalizer
�	�
�����

���
�����

������������������
�������

�	�
�����

���
�����

�	����������������
�

�

Figure 1.5. (a) Narrowband beamformer (spatial filter); (b) broadband beamformer (spatial-

temporal filter)

�
�
�� �
� �

�! "��#

�%$ �
� �

Lowpass &  (')#
*  ��+#

,.-0/21"3�4�5 6

7  ('8#

Figure 1.6. Transmitted real signal u(t) and complex baseband signal s(t).

1.2.2 Complex baseband signal representation

Let us recall the following facts. In signal processing, signals are usually represented by their
lowpass equivalents, see e.g., [7]. This is a suitable representation for narrowband signals in a
digital communication system. A real valued bandpass signal with center frequency fc may be
written as

u(t) = real{s(t)ej2πfct} = x(t) cos 2πfct − y(t) sin 2πfct (1.1)

where s(t) = x(t) + jy(t) is the complex envelope of the signal u(t), also called the baseband
signal. The real and imaginary parts, x(t) and y(t), are called the in-phase and quadrature
components of the signal u(t). In practice, they are generated by multiplying the received signal
with cos 2πfct and sin 2πfct followed by low-pass filtering. See figure 1.6. An alternative is to
apply a Hilbert transformation.

Suppose that the bandpass signal u(t) is delayed by a time τ . This can be written as

uτ (t) := u(t − τ) = real{s(t − τ)ej2πfc(t−τ)} = real{s(t − τ)e−j2πfcτej2πfct} .
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8 The wireless channel

The complex envelope of the delayed signal is thus sτ (t) = s(t − τ)e−j2πfcτ . Let W be the
bandwidth of the complex envelope s(t) and let S(f) be its Fourier transform. We then have

s(t − τ) =

∫ W/2

−W/2
S(f)e−j2πfτej2πftdf

If |2πfτ | � 1 for all frequencies |f | ≤ W
2 we can approximate e−j2πfτ ≈ 1 and get

s(t − τ) ≈
∫ W/2

−W/2
S(f)ej2πftdf = s(t)

Thus, we have for the complex envelope sτ (t) of the delayed bandpass signal uτ (t) that

sτ (t) ≈ s(t)e−j2πfcτ for Wτ � 1

The conclusion is that, for narrowband signals, time delays smaller than the inverse bandwidth
may be represented as phase shifts of the complex envelope. This is fundamental in direction
estimation using phased antenna arrays.

For propagation across an antenna array, the maximal delay depends on the maximal distance
across the antenna array — the aperture, which is usually denoted in wavelengths related to
the carrier frequency fc. If the wavelength is λ = c/fc and the aperture is ∆ wavelengths, then
the maximal delay is τ = ∆λ/c = ∆/fc. In this context, narrowband means W∆ � fc. For
mobile communications, the wavelength for fc = 1 GHz is about 30 cm. For practical purposes,
∆ is small, say ∆ < 5 wavelengths, and narrow band means W � 200 MHz. This condition is
always satisfied.

For outdoor multipath propagation, the situation may be different. If there is a reflection on a
distant object, there may be path length differences of a few km, or ∆ = O(1000) at 1 GHz.
In this context, narrow band means W � 1 MHz, and for example for GSM this is not really
satisfied. In this case, delays of the signal cannot be represented by mere phase shifts, and we
need to do broadband beamforming.

1.2.3 Antenna array response

Consider an array consisting of M antenna elements placed along a line in space, also known as a
linear array. See figure 1.7. For narrowband signals with carrier frequency fc, the corresponding
wavelength λ is given by λ = c/fc where c is the speed of propagation. The distance of the i-th
element to the first is denoted by δi, or ∆i = δi/λ wavelengths.

Suppose that a point source is present in the far field. Let s0(t) be the transmitted baseband
signal. If the distance between the source and the array is large enough in comparison to the
extent of the array, the wave incident on the array is approximately planar. The received plane
wave can then be charactarized by an attenuation A and a direction of arrival θ. Let ai(θ) be
the gain pattern of the i-th antenna element. The signal received at the i-th antenna then is

xi(t) = ai(θ)As0(t − Ti)e
−j2πfcTi (1.2)
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Figure 1.7. A linear array receiving a far field point source

where Ti is the time it takes the signal to travel from the source to the i-th element of the array.
Generally, an array with identical elements is assumed. In that case, all antennas have the same
gain pattern: ai(θ) = a(θ). Defining s(t) = s0(t− T1), τi = Ti − T1, and β = Ae−j2πfcT1 , we can
then write (1.2) as

xi(t) = a(θ)βs(t − τi)e
−j2πfcτi (1.3)

Note that the relation between τi and θ is given by

2πfcτi = −2πfc
δi sin(θ)

c
= −2π

δi

λ
sin(θ) = −2π∆i sin(θ)

If the τi are small compared to the inverse bandwidth of s(t), we may set sτi(t) := s(t −
τi)e

−j2πfcτi = s(t)e−j2πfcτi = s(t)ej2π∆i sin(θ). Collecting the signals received by the individual
elements into a vector x(t), we obtain from (1.3)

x(t) = a(θ)β




sτ1(t)
sτ2(t)

...
sτM (t)




=




1

ej2π∆2 sin(θ)

...

ej2π∆M sin(θ)




a(θ)βs(t) := a(θ)βs(t)

where the array response vector a(θ) is the response of the array to a planar wave with DOA
θ. The array manifold A is the curve that a(θ) describes in the M -dimensional complex vector

ET4 147 (2005): Signal Processing for Communications



10 The wireless channel

space |C
M when θ is varied over the domain of interest:

A = {a(θ) : 0 ≤ θ < 2π}

For a uniform linear array, we have that all distances between two consecutive array elements
are the same, so that ∆i = (i − 1)∆. In this case, the array response vector can be written as

a(θ) =




1

ej2π∆ sin(θ)

...

ej2π(M−1)∆ sin(θ)




a(θ)

In many algorithms, the common factor (gain pattern) a(θ) does not play a role and is often
omitted: each antenna is assumed to have a gain of one in all directions (we assume “omnidi-
rectional” and “normalized” antennas), although this assumption is not always necessary.

1.2.4 Array manifold and parametric direction finding

Data models of the form
x(t) = a(θ)βs(t)

play an important role throughout this book. Note that for varying source samples s(t), the
data vector x(t) is only scaled in length, but its direction a(θ) is constant. Thus, x(t) is confined
to a line. If we know the array manifold, i.e., the function a(θ), then we can determine θ by
intersecting the line with the curve traced by a(θ) for varying θ, or “fitting” the best a(θ) to
the direction of the x(t), see figure 1.8.

For two sources, the data model becomes a superposition,

x(t) = a(θ1)β1s1(t) + a(θ2)β2s2(t) = [a(θ1) a(θ2)]

[
β1

β2

] [
s1(t)
s2(t)

]

or

x(t) = AθBs(t) , Aθ = [a(θ1) a(θ2)] , B =

[
β1

β2

]
, s(t) =

[
s1(t)
s2(t)

]

When s1(t) and s2(t) both vary with t, x(t) is confined to a plane. Direction finding now amounts
to intersecting this plane with the array manifold, see figure 1.8.

Considering multipath propagation, as will be explained in section 1.3.1, we actually obtain a
linear combination of the same source via different paths. If the relative delays between the
different paths are small compared to the inverse bandwidth, the delays can be represented by
phase shifts. Thus, the data model is

x(t) = a(θ1)β1s(t) + a(θ2)β2s(t) + . . . + a(θr)βrs(t)
= {β1a(θ1) + β2a(θ2) + . . . + βra(θr)} s(t) = a s(t)

(1.4)

In this case, the combined vector a is not on the array manifold and direction finding is more
complicated. At any rate, x(t) contains an instantaneous multiple a of s(t).

ET4 147 (2005): Signal Processing for Communications



1.2 Antenna array receiver model 11
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Figure 1.8. Direction finding means intersecting the array manifold with the line or plane

spanned by the antenna output vectors

1.2.5 Beamforming and source separation

With two narrowband sources and multipath, we receive a linear mixture of these sources,

x(t) = a1s1(t) + a2s2(t) = As(t)

The objective of source separation is to estimate beamformers w1 and w2 to separate and recover
the individual sources:

y1(t) = w
H

1 x(t) = ŝ1(t) , y2(t) = w
H

2 x(t) = ŝ2(t) ,

or in matrix form, with W = [w1 w2],

W
H
x(t) = s(t) ⇔ W

H
A = I

Thus, we have to obtain an estimate of the mixing matrix A and invert it to separate the
sources. There are several ways to estimate A. One method we have seen before: if there is no
multipath, then

A = [a(θ1) a(θ2)]

[
β1

β2

]
= AθB

By estimating the directions of the sources, we find estimates of θ1 and θ2, and hence Aθ becomes
known. B is not known, but its estimation can be omitted by employing differential modulation,
see section 1.4.

In other situations, in wireless communications, we may know the values of s1(t) and s2(t) for
a short time interval t = [0, N), the data contains a “training period”. We thus have a data
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Figure 1.9. Spatial responses to a beamformer w = [1, · · · , 1]T .

model
X = AS , X = [x(0) , · · · ,x(N − 1)] , S = [s(0) , · · · , s(N − 1)] .

This allows to set up a least squares problem

min
A

‖X − AS ‖2
F

with X and S known. The solution is given by

A = XS
H
(SS

H
)−1

and subsequently W = A−H .

1.2.6 Array response graph

Let us know consider in some more detail the properties of the array response vector a(θ). For
simplicity, we will look at uniform linear arrays. Suppose we have an antenna spacing of λ/2,
and select a simple beamformer of the form

w =




1
...
1




i.e., we simply sum the outputs of the antennas. The response of the array to a unit-amplitude
signal (|βs(t)| = 1) from direction θ is then characterized by

|y(t)| = |wH
a(θ)|

Graphs of this response for M = 2, 3, 7 antennas are shown in figure 1.9. Note that the response
is maximal for a signal from the direction 0◦, or broadside from the array. This is natural since

ET4 147 (2005): Signal Processing for Communications



1.2 Antenna array receiver model 13

−50 0 50
0

1

2

3

4

5

6

7

angle [deg]

spatial response for fixed w

M = 7

Delta = 0.5

−50 0 50
0

1

2

3

4

5

6

7

angle [deg]

spatial response for fixed w

M = 7

Delta = 1

−50 0 50
0

1

2

3

4

5

6

7

angle [deg]

spatial response for fixed w

M = 7

Delta = 2

Figure 1.10. Grating lobes

a signal from this direction is summed coherently, as we have seen in the begining of the section.
The gain in this direction is equal to M , the array gain. From all other directions, the signal
is not summed coherently. For some directions, the response is even zero, where the delayed
signals add destructively. The number of zeros is equal to M −1. In between the zeros, sidelobes
occur. The width of the main beam is also related to the number of antennas, and is about
180◦/M . With more antennas, the beamwidth gets smaller.

Ambiguity and grating lobes Let us now consider what happens if the antenna spacing in-
creases beyond λ/2. We have an array response vector

a(θ) =




1
φ
...

φM−1




, φ = ej2π∆ sin(θ)

Since sin(θ) ∈ [−1, 1], we have that 2π∆ sin(θ) ∈ [−2π∆, 2π∆]. If ∆ > 1/2, then this interval
extends beyond [−π, π]. In that case, there are several values of θ that give rise to the same
argument of the exponent, or to the same φ. The effect is two-fold:

• spatial aliasing occurs: we cannot recover θ from knowledge of φ, and

• in the array reponse graph, grating lobes occur, see figure 1.10. This is because coherent
addition is now possible for several values of θ.

Grating lobes prevent a unique estimation of θ. However, we can still estimate A and it does
not prevent the possibility of null steering or source separation. Sometimes, grating lobes can be
suppressed by using directional antennas rather than omnidirectional ones: the spatial response
is then multiplied with the directional response of the antenna and if it is sufficiently narrow,
only a single lobe is left.
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Figure 1.11. Beam steering. (a) response to w = a(30◦); (b) response for scanning w = a(θ),

in a scenario with two sources, well separated, and (c) separated less than a

beam width.

Beam steering Finally, let us consider what happens when we change the beamforming vector
w. Although we are free to choose anything, let us choose a structured vector, e.g., w = a(30◦).
Figure 1.11 shows the response to this beamformer. Note that now the main peak shifts to 30◦,
signals from this direction are coherently added. By scanning w = a(θ), we can place the peak
at any desired θ. This is called classical beamforming.

This also provides a simple way to do direction estimation. Suppose we have a single unit-
amplitude signal, arriving from broadside (0◦),

x(t) = a(0)βs(t) =




1
...
1


 βs(t) = 1βs(t), |βs(t)| = 1

If we compute y(t) = wHx(t) and scan w = a(θ) over all values of theta and monitor the output
power of the beamformer,

|y(t)| = |wH
x(t)| = |a(θ)

H
1| , −π ≤ θ ≤ π

then we obtain essentially the same array graph as in 1.9 before (it is the same functional).
Thus, there will be a main peak at 0◦, the direction of arrival, and the beam width is related to
the number of antennas. In general, if the source is coming from direction θ0, then the graph
will have a peak at θ0.

If we consider two unit-amplitude signals: x(t) = a(θ1)β1s1(t)+a(θ2)β2s2(t), with |β1s1(t)| = 1
and |β2s2(t)| = 1, the array graph will show two peaks, at θ1 and θ2, at least if the two sources
are well separated. If the sources are close, then the two peaks will merge and at some point we
will not recognize that there are in fact two sources.

The choice w = a(θ) is one of the simplest forms of beamforming.3 It is data independent and

3It is known as maximum ratio combining or matched filtering in communications.
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non-parametric (i.e., the explicit structure of a(θ) is not exploited), and optimal only for a single
source in white noise. One can show that for more than 1 source, the parameter estimates for
the directions θi will be biased: the peaks have a tendency to move a little bit to each other.
Unbiased estimates are obtained only for a single source.

There are other ways of beamforming, in which the beamformer is selected depending on the
data, with higher resolution (sharper peaks) and better statistical properties in the presence
of noise. Alternatively, we may follow a parametric approach in which we pose the model
x(t) = a(θ1)β1s1(t) + a(θ2)β2s2(t) and try to compute the parameters θ1 and θ2 that best fit
the observed data, as we discussed in section 1.2.4.

1.3 PHYSICAL CHANNEL PROPERTIES4

1.3.1 Wide-area multipath propagation model

The propagation of signals through the wireless channel is fairly complicated to model. A
correct treatment would require a complete description of the physical environment and involve
Maxwells equations, and would not be very useful for the design of signal processing algorithms.
To arrive at a more useful parametric model, we have to make simplifying assumptions regarding
the wave propagation. Provided this model is reasonably valid, we can, in a second stage, try to
derive statistical models for the parameters to obtain reasonable agreement with measurements.

The number of parameters in an accurate model can be quite high, and from a signal processing
point of view, they might not be very well identifiable. For this reason, another model used in
signal processing is a much less sophisticated unparametrized model. The radio channel is simply
modeled as an FIR (finite impulse response) filter, with main parameters the impulse response
length (in symbols) and the total attenuation or signal-to-noise ratio (SNR). This model is
described in section 1.5. The parametrized model is a special case, giving structure to the FIR
coefficients.

Jakes’ model A commonly used parametric model is a multiray scattering model, also known
as Jakes’ model (after Jakes [2], see also [1, 3, 10–12]). In this model, the signal follows on
its way from the source to the receiver a number of distinct paths, referred to as multipaths.
These arise from scattering, reflection, or diffraction of the radiated energy on objects that lie
in the environment. The received signal from each path is much weaker than the transmitted
signal due to various scattering and fading effects. Multipath propagation also results in the
spreading of the signal in various dimensions: delay spread in time, Doppler spread in frequency,
and angle spread in space. Each of them has a significant effect on the signal. The mean path
loss, shadowing, fast fading, delay, Doppler spread and angle spread are the main channel
characteristics and form the parameters of the multiray model.

4Adapted from Paulraj and Papadias [1], B. Ottersten [8], and D. Aztely [9].
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Figure 1.12. Multipath propagation model

The scattering of the signal in the environment can be specialized into three stages: scattering
local to the source at surrounding objects, reflections on distant objects of the few dominant
rays that emerge out of the local clutter, and scattering local to the receiver. See figure 1.12.

Scatterers local to the mobile Scattering local to the mobile is caused by buildings and other
objects in the direct vicinity of the mobile (at, say, a few tens of meters). Motion of the mobile
and local scattering give rise to Doppler spread which causes “time-selective fading”: the signal
power can have significant fluctuations over time. While local scattering contributes to Doppler
spread, the delay spread will usually be insignificant because of the small scattering radius.
Likewise, the angle spread will also be small.

Remote scatterers Away from the cluster of local scatterers, the emerging wavefronts may then
travel directly to the base or may be scattered toward the base by remote dominant scatterers,
giving rise to specular multipath. These remote scatterers can be either terrain features (distant
hills) or high rise building complexes. Remote scattering can cause significant delay and angle
spreads.

Scatterers local to the base Once these multiple wavefronts reach the base station, they may
be scattered further by local structures such as buildings or other structures that are in the
vicinity of the base. Such scattering will be more pronounced for low elevation and below-roof-
top antennas. The scattering local to the base can cause significant angle spread which can cause
space-selective fading: different antennas at the base station can receive totally different signal
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powers. This fading is time invariant, unlike the time varying space-selective fading caused by
remote scattering.

The forward link channel is effected in similar ways by these scatterers, but in a reverse order.

Model overview Let us ignore the local scattering for the moment, and assume that there are
r rays bouncing off remote objects such as hills or tall buildings. The received parametric signal
model is then usually written as the convolution

x(t) =

[
r∑

i=1

a(θi)βig(t − τi)

]
∗ s(t) (1.5)

where x(t) is a vector consisting of the M antenna outputs, a(θ) is the array response vector,
and the impulse response g(t) collects all temporal aspects, such as pulse shaping and transmit
and receive filtering. In the previous models, g(t) was lumped into s(t), whereas in this more
complete model, we explicitly bring out the temporal filtering effects. The model parameters of
each ray are its (mean) direction of arrival θi, (mean) delay τi, and complex gain βi. The latter
parameter lumps the overall attenuation and all phase shifts.

Each of the rays is itself composed of a large number of “mini-rays” due to scattering local to the
mobile: all with roughly equal angles and delays, but arbitrary phases. This can be described
by extending the model with additional parameters such as the standard deviations from the
mean direction of arrivel θi and mean delay τi, which depend on the radius (aspect ratio) of
the scattering region and its distance to the remote scattering object [8, 13]. For macroscopic
models, the standard deviations are generally small (less than a few degrees, and a fraction of
τi) and are usually but not always ignored. The scattering local to the mobile has however a
major effect on the statistics and stationarity of βi, as will be discussed later on.

Sattering local to the base will complicate the model a lot, and will make us loose the iden-
tifiability of the directions in which the rays are entering at the base station array. However,
the receiving antennas at the base station are usually placed high above the ground so that the
effects of waves scattered in the vicinity of the receiving antennas can be neglected.

1.3.2 Fast fading

Let us focus on a single ray of the multipath model, and omit the subscript i. The complex
gain β of this ray can actually be decoupled into three factors. The first factor is the path loss,
which is due to the fact that we loose energy when the signal travels from the mobile to the
base station. The second factor is the slow or long term fading, which is due to slowly varying
shadowing effects of buildings or natural features. The third and final factor is the fast or short
term fading, which we focus on in this section. It refers to the rapid fluctuations of a received
multipath ray and is due to the scattering of the signal by a cluster of objects near the moving
source. The assumption is that each ray in the multipath model is the sum of a large number of
locally scattered wavefronts, with randomized directions of arrival, i.e., with phases uniformly
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distributed in [0, 2π). As a result, the in-phase and quadrature phase components of the vertical
electrical field are Gaussian processes.

Remember that the expression of the complex gain for a single mini-ray is given by Ae−j2πfcT ,
where A is the attenuation and T is the propagation delay. Each complex gain β in (1.5) is the
result of many such mini-rays, and can therefore be written as

β =
N∑

n=1

Ane−j2πfcTn ,

where An and Tn are respectively the attenuation and the delay related to the n-th mini-ray
of the considered ray. If the relative propagation delays are approximately independent and
uniformly distributed over an interval ∆T defined as

∆T = max
n

Tn − min
n

Tn

it is reasonable to assume that the phases φn defined as φn = 2πfcTn mod 2π are random
variables independent and uniformly distributed in the interval [0, 2π). The An’s are usually
assumed to be i.i.d. as well. Writing β as β = a + jb it is then clear that both a and b are the
sums of N i.i.d. random variables. From the central limit theorem we can therefore conclude
that they are asymptotically Gaussian distributed. Thus, the complex gain β is approximately
complex Gaussian distributed,

β ∼ CN (0, σ2
β) ⇔ p(β) =

1√
2πσβ

e
− |β|2

σ2
β

where the variance σ2
β is given by

σ2
β = E[|β|2] = NE[|An|2]

The absolute value (amplitude) of a complex random number with zero mean i.i.d. Gaussian
distributed real and imaginary parts has a distribution known as the Rayleigh density function
[2]: let r = |beta|, then

p(r) =
r

σ2
e−r2/2σ2

, r ≥ 0 (1.6)

where σ is the standard deviation of each component. The distribution has mean σ
√

π/2 and
variance (2− π/2)σ2. The distribution is plotted in figure 1.13(a)). Essential for the derivation
of this Rayleigh model is that we have a large number of i.i.d. waves, with relative time delays
(i.e., delay spread) small enough to model them as phase shifts.

The sum of two squared Gaussian variables has a Chi-square distribution with two degrees of
freedom. This is the distribution of |β|2 = a2 + b2, which is the power of the resulting ray
(mean is σ2

β , standard deviation is also σ2
β). The corresponding cumulative density function is

shown in figure 1.13(b), and specifies the probability that the power of the ray is smaller than
the ordinate. Fades of 10 dB or more are not unlikely!
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Figure 1.13. (a) Zero mean Gaussian, and Rayleigh probability distributions, for σ = 1,
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Note that β is actually time-varying: if the source is in motion, then the Doppler shifts and/or
the varying location change the phase differences among the mini-rays, so that the sum can be
totally different from one time instant to the next. The maximal Doppler shift fD is given by
the speed of the source (in m/s) divided by the wavelength of the carrier. The coherence time
of the channel is inversely proportional to fD, roughly by a factor of 0.2: β can be considered
approximately constant for time intervals smaller than this time [3, 14, 15]. Angles and delays
are generally assumed to be stationary over much longer periods. For simplicity, we will generally
ignore the time selectivity.

1.3.3 Multiray parameters

Now that we have seen the properties of a single ray, it remains to describe how the collection
of rays adds up at a receiving antenna.

Delay spread and frequency selective fading Due to the multipath propagation, each ray ex-
periences a different time delay, so that several time-shifted and scaled copies of the transmitted
signal will arrive at the receiver. This spreading in time is called delay spread. Precise models
are hard to give as they strongly depend on the type of surroundings, but typically, a double
negative exponential distribution is observed: the delay separation between paths increases neg-
ative exponentially with path delay, and the path amplitudes also fall off negative exponentially
with delay.

The delay spread determines the maximal symbol rate for which no equalization is required. The
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Table 1.2. Typical delay, angle and Doppler spreads in cellular applications.

Environment delay spread angle spread Doppler spread

Flat rural (macro) 0.5 µs 1◦ 190 Hz

Urban (macro) 5 µs 20◦ 120 Hz

Hilly (macro) 20 µs 30◦ 190 Hz

Mall (micro) 0.3 µs 120◦ 10 Hz

Indoors (pico) 0.1 µs 360◦ 5 Hz

inverse of the delay spread is proportional to the coherence bandwidth [2, 3, 15]: the distance |f1−
f2| in frequency domain over which |X(f1)| is significantly correlated to |X(f2)|. Narrowband
signals with a bandwidth sufficiently smaller than the inverse of the delay spread experience a
flat channel (in the frequency domain) that does not require equalization: g(t) is essentially a
scalar and can be lumped with βi.

For a delay spread of τ = 1 µs (a typical value), the coherence bandwidth is approximately
1/2πτ = 150 kHz [2, ch.1]. The larger the delay spread, the smaller the coherence bandwidth.

If there is only a single dominant ray, or if there are a few rays but with approximately the same
delays (as compared to the inverse of the signal bandwidth), then there is no delay spread and
the channel frequency response is flat. Because of the scattering local to the source, Rayleigh
fading can still occur, but will affect all frequencies equally. Such a scenario is known as a “flat
fading channel”.

Angle spread and space selective fading Angle spread refers to the spread in arrival angles
of the different rays at the antenna array. The inverse of the angle spread determines the
coherence distance, which gives an indication of the minimal distance by which two antennas
have to be spaced to enable separation of two disparate rays within this spread by (classical)
spatial separation techniques.

Angle spreads are strongly dependent on the geometry of the environment and have not been
studied as thoroughly yet as delay spreads. Current research suggests that most outdoor channels
can be modeled adequately by a small number of dominant rays and that in open or suburban
terrain, most energy is often concentrated in only a single ray in the direction of the mobile [22].
Moreover, multiple rays usually have widely separated angles.

Typical channel parameters Angle spread, delay spread, and Doppler spread are important
characterizations of a mobile channel, as it determines the amount of equalization that is re-
quired, but also the amount of diversity that can be obtained. Measurements in macrocells
indicate that up to 6 to 12 dominant paths may be present. Typical channel delay and Doppler
spreads (1800 MHz) are given in table 1.2 [3, 14] (see also references in [12]). Typical angle
spreads are not well known; the given values are suggested by [1].
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Figure 1.14. GSM specified “propagation models”. The taps are considered to be independent

Rayleigh distributed random variables, except for the first tap of the rural area

model which is Rice distributed.

The European Telecommunication Standard Institute (ETSI) has in [23] specified some typical
discretized impulse responses to be used in simulations. A conventional single receiving antenna
is assumed, so angle spread is not specified. Figure 1.14 shows two such impulse response. The
validity of these channel models is under discussion. E.g., angle spread and directivity is not
part of the specification, and the relative time delays should of course be randomized as well. To
put the given delays into perspective, note that the data transmission rate in GSM is 270 kb/s,
so that the duration of each bit is 1/270000 ≈ 3.7 µs.

Several measurements with sine-waves have been done to estimate the geometrical properties
of the local scatterers [10, 11, 16, 18]. Since the bandwidth of a sinewave is zero, no temporal
aspects could be extracted from these experiments, and it is not possible to tell whether different
rays come from local scatterers or from other ray paths corresponding to much larger time delays.
Not many measurements have been carried out so far that perform a joint estimation of both
time delay and directions of arrival.

One case in which the spatial channel model has been validated against experimental data
collected by Ericsson Radio Systems is described in [8]. In the field experiments, a transmitter
has been placed in urban areas with non line of sight approximately 1 km from the receiving array
which was elevated 30 meters above the ground [24]. The data has been processed to gain insight
into propagation effects as well as into the behavior of some receiving algorithms. In [19, 25] the
angular spread is found to be between 2◦ and 6◦ in the experiments for a transmitter placed 1
km from the receiving array. In figure 1.15, the estimated directions and angular spreads along
with their associated standard deviations are displayed for a number of trials at one location.

ET4 147 (2005): Signal Processing for Communications



22 The wireless channel

1 1.5 2 2.5 3 3.5 4 4.5 5
-10

-9

-8

-7

-6

-5

D
O

A
 [d

eg
]

1 1.5 2 2.5 3 3.5 4 4.5 5
1

2

3

4
an

gu
la

r 
sp

re
ad

 [d
eg

]

trial number

Figure 1.15. Estimated directions and angular spreads for 5 different trials in an experiment

by Ericsson

1.4 SIGNAL MODULATION

Before a digital bit sequence can be transmitted over a radio channel, it has to be prepared:
among other things, it has to be transformed into an analog signal in continuous time and
modulated onto a carrier frequency. The various steps are shown in figure 1.16. The coding
step, in its simplest form, maps the binary sequence {bk} ∈ {0, 1} into a sequence {sk} with
another alphabet, such as {−1, +1}. A digital filter may be part of the coder as well. In linear
modulation schemes, the resulting sequence is then convolved with a pulse shape function p(t),
whereas in phase modulation, it is convolved with some other pulse shape function q(t) to yield
the phase of the modulated signal. The resulting baseband signal s(t) is modulated by the
carrier frequency fc to produce the RF signal that will be broadcast.

In this section, a few examples of coding alphabets and pulse shape functions are presented, for
future reference. We do not go into the properties and reasons why certain modulation schemes
are chosen; see e.g., [4] for more details.

1.4.1 Digital alphabets

The first step in the modulation process is the coding of the binary sequence {bk} into some other
sequence {sk}. The {sk} are chosen from an alphabet or constellation, which might be real or
complex. There are many possibilities; common examples are BPSK (binary phase shift keying),
QPSK (quadrature phase shift keying), m-PSK, m-PAM (pulse amplitude modulation), m-
QAM (quadrature amplitude modulation), defined as in table 1.3. See also figure 1.17. Smaller
constellations are more robust in the presence of noise, because of the larger distance between
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Figure 1.16. Modulation process

Table 1.3. Common digital constellations

sk chosen from (up to a possible scaling):

BPSK {1,−1}
QPSK {1, j,−1,−j}
m-PSK {1, ej2π/m, ej2π2/m, . . . , ej2π(m−1)/m}
m-PAM {±1,±3, . . . ,±(m − 1)}
m-QAM {±1 ± j,±1 ± 3j, . . . ,±1 ± (

√
m − 1)j,±3 ± j, . . . ,±(

√
m − 1) ± (

√
m − 1)j}

the symbols. Larger constellations may lead to higher bitrates, but are harder to detect in noise.

A filtering operation might be part of the coder. Differential encoding is often used. In differ-
ential PSK (DPSK), for instance, the phase is shifted relative to the previous phase, e.g., over
0o and 180o for DBPSK and over 0o, 90o, 180o, and 270o for DQPSK. Filtering operations are
done for spectral shaping, to obtain better spectral properties of the modulated signal. It can
also be used to build in some amount of redundancy, or to simplify demodulation.

It is possible that the symbol rate of the output of the coder is different than the input bit rate.
E.g, if a binary sequence is coded into m-PSK, m-PAM, or m-QAM, the rate drops by a factor
of log2 m. (The opposite is also possible, e.g., in CDMA systems, where each bit is coded into
a sequence of 31 or more “chips”.)

1.4.2 Raised cosine pulseshape

The coded digital signal sk can be described in analog form as a sequence of dirac pulses,

sδ(t) =
∞∑

k=−∞
skδ(t − k) ,
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Figure 1.17. Digital constellations

where, for convenience, the symbol rate is normalized to T = 1. In linear modulation schemes,
the digital dirac-pulse sequence is convolved by a pulse shape function p(t):

s(t) = p(t) ∗ sδ(t) =
∞∑

k=−∞
skp(t − k) .

Again, there are many possibilities. The optimum wave form is one that is both localized in time
(to lie within a pulse period of length T = 1) and in frequency (to satisfy the Nyquist criterion
when sampled at a rate 1/T = 1). This is of course impossible, but good approximations exist.
A pulse with perfect frequency localization is the sinc-pulse, defined by

p(t) =
sin πt

πt
, P (f) =

{
1 , |f | < 1

2
0 , otherwise

(1.7)

However, the pulse has very long tails in the time-domain. A modification of this pulse leads to
the family of raised-cosine pulseshapes, with better localization properties. They are defined,
for α ≤ 1, by [4, ch.6]

p(t) =
sin πt

πt
· cos απt

1 − 4α2t2

with corresponding spectrum

P (f) =





1 , |f | < 1
2(1 − α)

1
2 − 1

2 sin(π
α(|f | − 1

2)) , 1
2(1 − α) < |f | < 1

2(1 + α)
0 , otherwise

The spectrum is limited to | f | ≤ 1
2(1 + α), so that α represents the excess bandwidth. For

α = 0, the pulse is identical to the sinc pulse (1.7). For other values of α, the amplitude decays
more smoothly in frequency, so it is also known as the rolloff factor. The shape of the rolloff
is that of a cosine, hence the name. In the time domain, the pulses are still infinite in extent.
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Figure 1.18. (a) Family of raised-cosine pulse shape functions, (b) corresponding spectra.

However, as α increases, the size of the tails diminishes. A common choice is α = 0.35, and to
truncate p(t) outside the interval [−3, 3].

The raised-cosine pulses are designed such that, when sampled at integer time instants, the
only nonzero sample occurs at t = 0. Thus, sk = s(k), and to recover {sk} from s(t) is simple,
provided we are synchronized: any fractional delay 0 < τ < 1 results in intersymbol interference.
Sometimes, we assume that p(t) is part of the filter g(t) in (1.5), in which case (1.5) transforms
into

x(t) =

[
r∑

i=1

a(θi)βig(t − τi)

]
∗ sδ(t)

=
∞∑

k=−∞

[
r∑

i=1

a(θi)βig(t − k − τi)

]
sk.

(1.8)

1.4.3 Phase modulation

An alternative to linear modulation is phase modulation,

s(t) = ejφ(t) , φ(t) = q(t) ∗ sδ(t) =
∞∑

k=−∞
skq(t − k) ,

In this case, the digital symbols are modulated with some phase function q(t), which gives the
phase of the modulated signal. A simple choice for q(t) is

q(t) =





0 t < 0 ,
πt 0 ≤ t < 1 .
π t ≥ 1
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Figure 1.19. Spatial beamformer with an I-MIMO channel.

Note that the phase changes are very abrupt at integer times, leading to excess bandwidth. To
mitigate this, we can use a smoother function for q(t), and/or a smaller modulation index (scaling
of q(t) so that q(∞) < π), and/or a partial response modulation, where q(t) is nonconstant in a
larger interval than just [0, 1]. However, this study is beyond the scope of this course, and we
will generally consider only linear modulation schemes.

1.5 DATA MODEL FOR SIGNAL PROCESSING

In section 1.3, we have derived a channel model based on physical properties of the radio channel.
Though useful for generating simulated data, it is not always a suitable model for identification
purposes, e.g., if the number of parameters is large, if the angle spreads within a cluster are large
so that parametrization in terms of directions is not possible, or if there is a large and fuzzy
delay spread. In these situations, it is more appropriate to work with an unstructured model,
where the channel impulse responses are posed simply as arbitrary multichannel finite impulse
response (FIR) filters. It is a generalization of the physical channel model considered earlier, in
the sense that at a later stage we can still specify the structure of the coefficients.

1.5.1 I-MIMO model

Assume that d source signals s1(t), · · · , sd(t) are transmitted from d independent sources at
different locations. If the delay spread is small, then what we receive at the antenna array will
be a simple linear combination of these signals:

x(t) = a1s1(t) + · · · + adsd(t)

where as before x(t) is a stack of the output of the M antennas. We will usually write this in
matrix form:

x(t) = As(t) , A = [a1 · · ·ad] , s(t) =



s1(t)

...
sd(t)


 .
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Suppose we sample with a period T , normalized to T = 1, and collect a batch of N samples into
a matrix X, then

X = AS

where X = [x(0) · · ·x(N − 1)] and S = [s(0) · · · s(N − 1)]. The resulting [X = AS] model is
called an instantaneous multi-input multi-output model, or I-MIMO for short. It is a generic
linear model for source separation, valid when the delay spread of the dominant rays is much
smaller than the inverse bandwidth of the signals, e.g., for narrowband signals, in line-of-sight
situations or in scenarios where there is only local scattering. Even though this appears to limit
its applicability, it is important to study it in its own right, since more complicated convolutive
models can often be reduced (after equalization) to X = AS.

The objective of beamforming for source separation is to construct a left-inverse WH of A, such
that WHA = I and hence WHX = S: see figure 1.19. This will recover the source signals from
the observed mixture. It immediately follows that in this scenario it is necessary to have d ≤ M
to ensure interference-free reception, i.e., not more sources than sensors. If we know already
(part of) S, e.g., because of training, then WH = SX† = SXH(XXH)−1, where X† denotes the
Moore-Penrose pseudo-inverse of X, here equal to its right inverse (see chapter 2). With noise,
other beamformers may be better.

If we adopt the multipath propagation model, then A is endowed with a parametric structure:
every column ai is a sum of direction vectors a(θij), with different fadings βij . If the i-th source
is received through ri rays, then

ai =
ri∑

j=1

a(θij)βij = [a(θi1) · · ·a(θi,ri)]




βi1
...

βi,ri


 (i = 1, · · · , d) .

If each source has only a single ray to the receiver array (a line-of-sight situation), then each ai

is a vector on the array manifold, and identification will be relatively straightforward. The more
general case amounts to decomposing a given a-vector into a sum of vectors on the manifold,
which makes identification much harder.

To summarize the parametric structure in a compact way, we usually collect all a(θij)-vectors
and path attenuation coefficients βij of all rays of all sources in single matrices Aθ and B,

Aθ = [a(θ11) · · ·a(θd,rd
)] , B =




β11

. . .

βd,rd


 .

To sum the rays belonging to each source into the single ai-vector of that source, we define a
selection matrix

J =




1r1
0

. . .

0 1rd


 : r × d (1.9)
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Figure 1.20. Channel model.

where r =
∑d

1 ri and 1m denotes an m×1 vector consisting of 1’s. Together, this allows to write
the full (noise-free) I-MIMO data model as

X = AS , A = AθBJ . (1.10)

1.5.2 FIR-MIMO model

Assume that d source signals are transmitted from d independent sources, but moreover that
they are now received through a convolutive channel. This scenario is as in figure 1.2, a schematic
representation of the same is in figure 1.20. To limit ourselves to a practical and interesting
case, let us assume that the signals are digital with a common pulse period, so that they can be
described by a sequence of dirac pulses,

sj,δ(t) =
∞∑

k=−∞
sj,kδ(t − kT ) .

For convenience, we normalize the symbol period to T = 1. The signal emitted by a source is
a convolution of sj,δ(t) by the pulse shape function p(t), e.g., a raised cosine (generalized sinc
function), which gives

sj(t) = p(t) ∗ sj,δ(t) =
∞∑

k=−∞
p(t − k)sj,k
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After propagation through the channel, the signal is received by an array of M sensors, with
outputs x1(t), · · · , xM (t). The impulse response of the channel from source j to the i-th sensor,
hi,j(t), is a convolution of the pulse shaping filter p(t) and the actual channel response from sj,δ(t)
to xi(t). We can include any propagation delays and delays due to unsynchronized sources in
hi,j(t) as well. The data model is written compactly as the convolution

x(t) = H(t) ∗ sδ(t) ,

where

x(t) =




x1(t)
...

xM (t)


 , H(t) =




h11(t) · · · h1d(t)
...

...
hM1(t)· · ·hMd(t)


 , sδ(t) =



s1,δ(t)

...
sd,δ(t)


 .

At this point, we make the assumption that the M channels hi,j(t) associated to each source j
are FIR filters of (integer) length at most L symbols:

hi,j(t) = 0 , t /∈ [0, L) i = 1, · · · , M ; j = 1, · · · , d .

An immediate consequence of the FIR assumption is that, at any given moment, at most L
consecutive symbols of signal j play a role in x(t). Indeed, for t = k + τ , where k ∈ ZZ and
0 ≤ τ < 1, the convolution xi(t) =

∑
j hi,j(t) ∗ sj,δ(t) can be expressed as

xi(k + τ) =
L−1∑

l=0

hi,1(l + τ)s1,k−l + · · · +
L−1∑

l=0

hi,d(l + τ)sd,k−l . (1.11)

Suppose that we sample each xi(t) at a rate of P times the symbol rate, and collect samples
during K symbol periods. Then we can construct a data matrix X containing all samples as

X = [x0 · · · xN−1] :=




x(0) x(1) · · · x(N − 1)
x( 1

P ) x(1 + 1
P ) · · · x(N − 1 + 1

P )
...

...
...

x(P−1
P ) x(1 + P−1

P ) · · · x(N − 1 + P−1
P )




. (1.12)

X has size MP × N ; its k-th column xk contains the MP spatial and temporal samples taken
during the k-th interval. Based on the FIR assumption, it follows that X has a factorization

X = HSL (1.13)

where

H =




H(0) H(1) · · · H(L − 1)
H( 1

P ) H(1 + 1
P ) · · · H(L − 1 + 1

P )
...

...
...

H(P−1
P ) H(1 + P−1

P ) · · · H(L − 1 + P−1
P )




: MP × dL

SL =




s0 s1 . . . sN−1

s−1 s0 . . . sN−2
...

...
. . .

...
s−L+1 s−L+2 . . . sN−L




: dL × N ,

(1.14)
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Figure 1.21. Space-time equalizer

and in this context si = [s1,i · · · sd,i]
T , a d-dimensional vector. The matrix H represents the

unknown space-time channel, whereas S = SL contains the transmitted symbols.5 S has a
block-Toeplitz structure: it is constant along the diagonals. This structure is a consequence of
the time-invariance of the channel. For generality, we have assumed that the measured block
of data starts while the transmission of each of the signals was already in progress, i.e., x0 is
determined by previous symbols s−L+1, · · · , s−1 as well as s0. Note that if the channels do not
all have the same length L, then certain columns of H are equal to zero.

A linear equalizer in this context can be written as a vector w which combines the rows of X
to generate an output wHX. In the model so far, we can only equalize among the antenna
outputs (simple beamforming) and among the P samples within one sample period (polyphase
combining). More generally, we would want to filter over multiple sample periods, leading to
a space-time equalizer. For a linear equalizer with a length of m symbol periods, we have to
augment X with m − 1 horizontally shifted copies of itself:

Xm =




x0 x1 . . . xN−1
x−1 x0 . . . xN−2...

...
. . .

...
x−m+1 x−m+2 . . . xN−m


 : mMP × N .

Each column of Xm is a regression vector: the memory of the filter. Using Xm, a general space-
time linear equalizer can be written as wHXm, which combines mP snapshots of M antennas:

5The subscript L denotes the number of block rows in S. We usually omit the subscript if this does not lead

to confusion.
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see figure 1.21. The augmented data matrix Xm has a factorization

Xm = HmSL+m−1 =




H 0

H
. . .

0 H







s0 s1 . . . sN−1

s−1 s0 . . . sN−2
...

...
. . .

...
s−L−m+2 s−L−m+3 . . . sN−L−m+1




(1.15)
where H = Hm has size mMP × d(L + m − 1) and the m shifts of H to the right are each over
d positions. H also has a block-Toeplitz structure. SL+m−1 has the same structure as SL. A
necessary condition for space-time equalization (the output wHXm is equal to a row of SL+m−1)
is that H is tall, which gives minimal conditions on m in terms of M, P, d, L:

mMP ≥ d(L + m − 1) ⇒ m(MP − d) ≥ d(L − 1)

which implies

MP > d , m ≥ d(L − 1)

MP − d

Unlike spatial beamforming, it will not be necessary to find H†: it suffices to reconstruct a
single block row of S, which can be done with d space-time equalizers wi. Nonlinear equalizer
structures are possible, e.g., by using feedback, but are not discussed here.

1.5.3 Connection to the parametric multipath model

For a single source, recall the multipath propagation model (1.8), valid for specular multipath
with small cluster angle and delay spread:

h(t) =
r∑

i=1

a(θi)βig(t − τi) (1.16)

where g(t) includes all the filtering at transmitter and receiver, as well as the pulse shape function
p(t). In this model, there are r distinct propagation paths, each parameterized by (θi, τi, βi),
where θi is the direction-of-arrival (DOA), τi is the path delay, and βi ∈ |C is the complex path
attenuation (fading). The vector-valued function a(θ) is the array response vector for an array
of M antenna elements to a signal from direction θ.

Suppose as before that h(t) has finite duration and is zero outside an interval [0, L). Conse-
quently, g(t−τi) has the same support for all τi. At this point, we can define a parametric “time
manifold” vector function g(τ), collecting LP samples of g(t − τ):

g(τ) =




g(0 − τ)
g( 1

P − τ)
...

g(L − 1
P − τ)




, 0 ≤ τ ≤ max τi .
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If we also construct a vector h with samples of h(t),

h =




h(0)
h( 1

P )
...

h(L − 1
P )




then it is straightforward to verify that (1.16) gives

h =
r∑

i=1

(gi ⊗ ai)βi = [g1 ⊗ a1, · · · ,gr ⊗ ar]



β1
...

βr




gi = g(τi) , ai = a(θi) ,

where ‘⊗’ denotes a Kronecker product, defined for vectors a and b as

a ⊗ b =




a1b
...

amb


 .

Thus, the multiray channel vector is a weighted sum of vectors on the space-time manifold
g(τ) ⊗ a(θ). Because of the Kronecker product, this is a vector in an LPM -dimensional space,
with more distinctive characteristics than the M -dimensional a(θ)-vector in a scenario without
delay spread. The connection of h with H as in (1.14) is that h = vec(H), i.e., h is a stacking
of all columns of H in a single vector.

We can define, much as before, parametric matrix functions

Aθ = [a(θ1) · · ·a(θr)] , Gτ = [g(τ1) · · ·g(τr)] , B =



β1

. . .

βr




Gτ ◦ Aθ := [g1 ⊗ a1, · · · ,gr ⊗ ar]

(Gτ ◦ Aθ) is a columnwise Kronecker product known as the Khatri-Rao product. this gives
h = (Gτ ◦ Aθ)B1r. Extending now to d sources, we get that the MP × dL-sized matrix H in
(1.14) can be rearranged into an MPL × d matrix

H′ = [h1 · · ·hd] = (Gτ ◦ Aθ)BJ .

where J is the selection matrix defined in (1.9) that sums the rays into channel vectors. (Gτ ◦Aθ)
now plays the same role as Aθ in the previous section. Each of its columns is a vector on the
space-time manifold.
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Summary A summary of the noise-free data models developed so far is

I-MIMO: X = AS , A = AθBJ
FIR-MIMO: X = HS , H ↔ H′ = (Gτ ◦ Aθ)BJ

(1.17)

The first part of these model equations is generally valid for linear time-invariant channels,
whereas the second part is a consequence of the adopted multiray model.

Based on this model, the received data matrix X or X has several structural properties. In
several combinations, these are often strong enough to allow to find the factors A (or H) and S
(or S), even from knowledge of X (or X ) alone. Very often, this will be in the form of a collection
of beamformers (or space-time equalizers) {wi}d

i=1 such that each beamformed output wH

i X (or
wH

i X ) is equal to one of the source signals, so that it must have the properties of that signal.

One of the most powerful “structures”, on which most systems today rely to a large extent, is
knowledge of part of the transmitted message (a training sequence), so that several columns
of S are known. Along with the received signal X , this allows to estimate H. Very often, an
unparameterized FIR model is assumed here. The algorithms are using a temporal reference.
Algorithms that do not use this are called blind. Examples of this will be discussed in the coming
chapters.

1.6 APPLICATIONS OF SPACE-TIME PROCESSING6

To end this chapter, we describe a few applications of antennas and space-time processing in
cellular base stations.

1.6.1 Simple space-time filtering

Switched beam systems Switched Beam Systems (SBS) use an antenna array, a switch and
a beam selector or sniffer. The SBS operates by forming a set of preformed beams, which are
then scanned by the sniffer to determine the best, or sometimes, the two best beams. These
beams are then switched through to the radio receiver. Beam selection is made by picking the
beam with the highest signal level (by use of a Received Signal Strength Indicator (RSSI)). Signal
fading and interference can cause incorrect beam selection and therefore the signal is often first
validated with the identifying color code prior to RSSI averaging.

The main advantage of the SBS is the improvement in cell coverage on the reverse link due to
the improved array gain of the antenna array. Also, since the SBS beamwidth is smaller than
that of a sector antenna, a reduction in the average interference power is also likely [26].

Adaptive spatial filtering Adaptive spatial filtering implements single user space-time pro-
cessing discussed earlier. The goals is to maximize the signal delivered power while minimizing

6From Paulraj and Papadias [1].
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ISI and CCI. These methods offer significant improvement in capacity and link quality in cellular
base stations. Details of implementation depend on the air-interface, propagation environment
and traffic characteristics. Adaptive spatial filtering offers both coverage and capacity improve-
ments.

1.6.2 Increasing capacity using space-time processing

Consider the simple low rank channel model in (1.4) which may be used to characterize the
downlink spatial channel statistics as well. In most current frequency division duplex (FDD)
systems the up and downlink fading may be considered independent. If the main objective
is increased range, this does not pose a major problem. However, the unobservable downlink
channel is one of the main obstacles if the intention is to also increase system capacity. An array
could be employed at the mobile site as well, but in many applications this is not considered a
feasible solution.7

There are two main approaches for increasing capacity with antenna arrays:

1. The frequency reuse distance may be decreased, or

2. multiple mobiles in the same cell may be allocated to the same channel.

Channel Reuse within Cell (CRC) (or space division multiple access, SDMA) refers to the reuse
of a channel within a cell by exploiting differences in directions of users. In CRC, the entire
spectrum resource of a cell is reused by exploiting separation in the directions of the users. This
is similar to spectrum reuse in cellular systems, where a channel used in one cell is reused in
another cell that is separated by a sufficient distance such that the co-channel interference is
sufficiently small.

Increase of the capacity of the uplink requires space-time processing to separate and equalize
multiple received signals. In the first case (smaller frequency reuse distance), the objective is
to detect only the desired user, but jointly estimating the strong adjacent cell interferers might
be beneficial for this. In the second case (co-channel users), all received signals have to be
separated and detected. This is a much more ambitious feat, since we have to ensure that we
can detect users, even when they are in a deep fade among strong interferers. Many algorithms
are currently devised to solve such joint estimation problems.

In any case, a capacity increase can only be realised if we can handle the downlink as well. The
idea is to have the base station transmit signals directed to the intended user, while sending nulls
in the direction of co-channel users. The problem with directional transmission in the downlink
is that it is truly blind: we have to rely on a channel model that was estimated from the uplink
channel.

In time division duplex (TDD) systems, the up- and downlink channels can be considered recip-
rocal if there is limited movement between receive and transmit, i.e., as long as the “ping-pong”

7This might change once higher frequencies are used.
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time is small compared to the channel coherence time. Uplink channel information may then
be used to achieve spatially selective transmission and thus increase the capacity [27]. We do
not have to use the parametric multipath model: the unstructured FIR model suffices. The
estimated uplink channel may be inverted in the sense that the signals are appropriately pre-
equalized and spatially multiplexed at the base station to minimize inter symbol and co-channel
interference at the users [28].

However, most current systems are frequency division duplex (FDD). If we are attempting to
increase capacity in current FDD systems in the downlink, the information gained from the signal
separation techniques in the uplink cannot be used directly. In most systems, the separation
between the forward and reverse link frequencies is about 5% of the mean carrier frequency. This
implies that the principle of reciprocity cannot be used: the up- and downlink flat fading may
be considered independent. The unobservable downlink channel is one of the main obstacles if
the intention is to also increase system capacity.

Two classes of solutions are known to date to attempt to solve this problem.

Parametric channel estimation and inversion The transformation of the space-time receive
weights to transmit weights is not a well conditioned problem unless the parametric multipath
model is introduced. Since the frequency separation is 5%, the forward and reverse channel
will share many common features. If the specular multipath channel model as described earlier
holds true, the paths used by both links can assumed to be identical: the path delays and paths
angles are the same for both links, and remain approximately constant over long periods in time.
However, the path amplitudes and phases (βi) are not the same on both links, and will in fact
be largely uncorrelated and independently fading. Hence, the overall channel response appears
to be uncorrelated between the forward and reverse links.

Channel estimation using feedback A direct approach to estimating the forward channel is to
arrange for the subscriber unit to feedback part of the received signal to the base station, enabling
it to estimate the channel [29]. This requires a complete redesign of protocols and signaling and
is probably only possible in environments which vary very slowly in time. However, it may be
feasible for movable (rather than mobile) systems such as indoor wireless local area networks.

In time varying channels which need frequent tracking, more efficient probing methods can be
used to reduce the overhead of multiple training signals. The common subspaces shared by the
two channels can be used with great effectiveness to minimize the amount of training needed [30].

Practical considerations CRC is very unlikely to be of value in current TDMA air interfaces.
FDD systems pose significant problems since the forward channel is only partially known. Even
in TDD systems rapid channel variations limit performance. In CDMA, because of inherent
quasi-orthogonality of user signals, CRC is much simpler to implement and in fact is used in the
current CDMA air interfaces.
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Core space-time processing algorithms discussed above serve as a basis for practical techniques
that can work in real mobile channels. The space-time processing solutions are influenced by
the multiple access technique, modulation, bit rate, slot duration and slot repetition rate, delay
spread, angle spread and number of paths, and the mobile speed. These core algorithms will
need to be merged in several ways to suit specific situations. Some examples are:

• Non-blind and blind. Most mobile radio interfaces support some form of periodic training.
However, the channel may vary between the training bursts and we need blind techniques to
track the channel between bursts. Therefore, hybrid blind/non-blind methods are needed
in many mobile applications.

• Single and multi-user. While some mobile applications may result in true multi-user situa-
tions, most applications have only one user of interest. However, since joint demodulation
of signal and interference can outperform single-user demodulation, multi-user algorithms
are preferred. This, however, needs knowledge of the interference channel which can be
hard to estimate due to weak interference power. In practice, some combination of single
and multi-user solutions may be needed to use only partial knowledge of the interference
channel.

• Spatial and temporal structure. While signal and temporal structure is robust to most
channels, large delay spread and high speed mobiles may stress such techniques to a
breaking point. Spatial structure methods, on the other hand, can work in high Doppler
situations but are affected by delay and angle spreads. Therefore, a combination of spatial
and temporal structure algorithms may be needed in complex environments.
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LINEAR ALGEBRA BACKGROUND
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Throughout the course, several linear algebra concepts such as subspaces, QR factorizations,
singular value decompositions (SVDs) and eigenvalue decompositions (EVDs) play an omni-
important role. This chapter gives a brief review of the most important properties as needed
here. Tutorial information as well as related technical papers on the subject of SVD and signal
processing can be found in [1] and the series [2, 3]. Suitable reference books on advanced matrix
algebra are Golub and Van Loan [4], and Horn and Johnson [5].

2.1 DEFINITIONS

Notation A bold-face letter, such as x, denotes a vector (usually a column vector, but occa-
sionally a row vector). Matrices are written with capital bold letters. A matrix A has entries
aij , and columns aj , and we can write

A = [aij ] = [a1 a2 · · · aN ] .

The N × N identity matrix is denoted by IN .

Complex conjugate is denoted by an overbar, the transpose of a matrix is denoted by AT = [aji].

For complex matrices, the complex conjugate (= hermitian) transpose is AH := A
T

.
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For two matrices A and B, the Kronecker product is defined as

A ⊗ B =




a11B · · · a1NB
...

...
aM1B · · · aMNB


 ,

and the Schur-Hadamard product as

A � B =




a11b11 · · · a1Nb1N
...

...
aM1bM1 · · · aMNbMN


 ,

provided A and B have the same size.

Vector norm Let x ∈ |C
N be an N -dimensional complex vector. The Euclidean norm (2-norm)

of x is

‖x ‖ :=
( N∑

i=1

|xi|2
)1/2

=
( N∑

i=1

x
H

i xi

)1/2

Matrix norms Let A ∈ |C
M×N be an M × N complex matrix. The induced matrix 2-norm

(also called the spectral norm, or the operator norm) is

‖A ‖ := max
x

‖Ax‖
‖x‖

It represents the largest magnification that can be obtained by applying A to any vector. An-
other expression for this is

‖A ‖2 = max
x

xHAHAx

xHx

The Frobenius norm of A represents the energy contained in its entries:

‖A ‖F =
( M∑

i=1

M∑

j=1

|aij |2
)1/2

Subspace The space H spanned by a collection of vectors {xi}

H := {α1x1 + · · · + αNxN | αi ∈ |C , ∀i}

is called a linear subspace

Important examples of subspaces are

Range (column span) of A: ran(A) = {Ax : x ∈ |C
N}

Kernel (row nullspace) of A: ker(A) = {x ∈ |C
N : Ax = 0}
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One routinely shows that
ran(A) ⊕ ker(AH) = |C

M

ran(AH) ⊕ ker(A) = |C
N

Here, H1 ⊕ H2 denotes the direct sum of two linearly independent subspaces, namely {x1 +
x2 | x1 ∈ H1, x2 ∈ H2}.

Linear independence A collection of vectors {xi} is called linearly independent if

α1x1 + · · · + αNxN = 0 ⇔ α1 = · · · = αN = 0 .

Basis An independent collection of vectors {xi} that together span a subspace is called a basis
for that subspace. If the vectors are orthogonal (xH

i xj = 0, i 6= j), it is an orthogonal basis. If
the vectors are orthonormal (xH

i xj = 0, i 6= j and ‖xi‖ = 1) it is an orthonormal basis.

Rank The rank of a matrix A is the number of independent columns (or rows) of A. A
prototype rank-1 matrix is A = abH, a prototype rank-2 matrix is A = abH + cdH, etc. The
rank cannot be larger than the smallest size of the matrix (when it is equal, the matrix is full
rank, otherwise it is rank deficient). A tall matrix is said to have full column rank if the rank is
equal to the number of columns: the columns are independent. Similary, a wide matrix has full
row rank if its rank equals the number of rows.

Unitary matrix A real (square) matrix U is called an orthogonal matrix if UTU = I, and
UUT = I. Likewise, a complex matrix U is unitary if UHU = I, UUH = I. A unitary matrix
looks like a rotation and/or a reflection. Its norm is ‖U ‖ = 1, and its columns are orthonormal.

Isometry A tall matrix Û is called an isometry if ÛHÛ = I. Its columns are an orthonormal
basis of a subspace (not the complete space). Its norm is ‖ Û ‖ = 1. There is an orthogonal
complement Û⊥ of Û such that U = [Û Û⊥] is square and unitary.

Projection A square matrix P is a projection if PP = P. It is an orthogonal projection if
also PH = P.

The norm of an orthogonal projection is ‖P ‖ = 1. For an isometry Û, the matrix P = ÛÛH is
an orthogonal projection onto the space spanned by the columns of Û. This is the general form
of an orthogonal projection.

Suppose U = [ Û︸︷︷︸
d

Û⊥
︸︷︷︸
M−d

] is unitary. Then,

1. from UHU = IM :

Û
H
Û = Id , Û

H
Û⊥ = 0 , (Û⊥)

H
Û⊥ = IM−d .
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2. from UUH = IM :

ÛÛ
H

+ Û⊥(Û⊥)
H

= IM , ÛÛ
H

= Pc , Û⊥(Û⊥)
H

= P⊥
c = IM − Pc

This shows that any vector x ∈ |C
M can be decomposed into x = x̂ + x̂⊥, where x̂ ⊥ x̂⊥,

x̂ = Pcx ∈ ran(Û) , x̂⊥ = P⊥
c x ∈ ran(Û⊥)

The matrices ÛÛH = Pc and Û⊥(Û⊥)H = P⊥
c are the orthogonal projectors onto the column

span of X and its orthogonal complement in |C
M respectively.

Similarly, we can find a matrix V̂H whose rows span the row span of X, and augment it with a
matrix V̂⊥ to a unitary matrix V:

V =
[

d↔ N−d↔
N l V̂ V̂⊥

]
.

The matrices V̂V̂H = Pr and V̂⊥(V̂⊥)H = P⊥
r are orthogonal projectors onto the original

subspaces in |C
N spanned by the columns of V̂ and V̂⊥, respectively. The columns of V̂⊥ span

the kernel (or nullspace) of X, i.e., the space of vectors a for which Xa = 0.

2.2 THE QR FACTORIZATION

Let X : N × N be a square matrix of full rank. Then there is a decomposition X = QR,

[
x1 x2 · · · xN

]
=

[
q1 q2 · · · qN

]




r11 r12 · · · r1N

0 r22 · · · r2N

0 0
. . .

...
0 0 0 rNN




The interpretation is that q1 is a normalized vector with the same direction as x1, similarly
[q1 q2] is an isometry spanning the same space as [x1 x2], etc.

In general, if X : M × N is a tall matrix (M ≥ N), then there is a decomposition

X = QR = [Q̂ Q̂⊥]

[
R̂
0

]
= Q̂R̂.

Here, Q is a unitary matrix, R̂ is upper triangular and square. R is upper triangular with
M − N zero rows added. X = Q̂R̂ is called an “economy-size” QR.

If R̂ is nonsingular (all entries on the main diagonal are invertible), then X has full column
rank N , the columns of Q̂ form a basis of the column span of X, and Pc = Q̂Q̂H. If R̂ is
rank-deficient, then this is not true: the column span of Q̂ is too large. However, the QR
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factorization can be used as a start in the estimation of an orthogonal basis for the column span
of X. Although this has sometimes been attempted, it is numerically not very robust to use the
QR directly to estimate the rank of a matrix. (Modifications such as a “rank-revealing QR” do
exist.)

Likewise, for a “wide” matrix (M ≤ N) we can define an RQ factorization

X = RQ = [R̂ 0]

[
Q̂

Q̂⊥

]

(for different Q and R). Now, X and R̂ have the same singular values and left singular vectors.

2.3 THE SINGULAR VALUE DECOMPOSITION (SVD)

Any M × N matrix X of rank d admits the following factorization, which is called the singular
value decomposition [4]

X = UΣV
H

= [Û Û⊥]




σ1 . . .
σd

0
. . .

0

0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0




[
V̂H

(V̂⊥)H

]

where U : M ×M and V : N ×N are unitary, and Σ is an M ×N diagonal matrix1 containing
the so-called singular values σi of X. These are positive real numbers ordered such that

σ1 ≥ σ2 ≥ · · · ≥ σd > σd+1 = · · · = σN = 0 .

Note that only d singular values are non-zero. The d columns of Û corresponding to these
non-zero singular values span the column space of X and are called the left singular vectors.
Similarly, the d columns of V̂ are called the right singular vectors and span the row space of X
(or the column space of XH). In terms of these (sometimes much) smaller matrices, the SVD of
X can also be written in ‘economy’ size:

X = ÛΣ̂V̂
H

, (2.1)

where Σ̂ is a d × d diagonal matrix containing σ1, · · · , σd. This form of the SVD better reveals
that X is actually of rank d: it is constructed from a product of rank-d matrices.

The SVD of X makes the various spaces (range and kernel) associated with X explicit. So does
any decomposition of X as X = ÛExV̂

H, where Û and V̂ are any matrices whose columns

1The equation shows Σ as a tall matrix (M ≥ N); if M ≤ N the structure is transposed.
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span the column and row spaces of X, respectively, and where Ex is an invertible d× d matrix.
The property that makes the SVD special is the fact that Ex is a diagonal matrix, so that a
decoupling is obtained: with ui the i-th column of U, and vi likewise for V, X can be written
as a sum of rank-1 isometric matrices uiv

H

i , scaled by σi:

X =
d∑

i=1

σi(uiv
H

i ) ,

and we also have

σiui = Xvi , σivi = X
H
ui .

This makes it possible to order the vectors in the column span and row span of X: the most
important direction in the column space is u1, with scale σ1, and is reached by applying X to
the vector v1. The second most important direction is u2, etc. This ranking will in turn lead to
optimal low-rank approximants of X (see below). In the mapping a ∈ |C

N → b ∈ |C
M : b = Xa,

b will automatically be a vector in the column range of X, and will be non-zero if and only if
a has a component in the row space of X; i.e., if and only if Pra is non-zero. On the other
hand, b will be identically zero if and only if a is orthogonal to the row space of X. Therefore,
the space spanned by the vectors vd+1, · · · ,vn in V̂⊥ is called the null space (or kernel) of X.
Vectors a in this space are mapped to zero by one of the zero singular values of X. The SVD of
X reveals the behavior of the map b = Xa: a is rotated in N -space (by VH), then scaled (by
the entries of Σ: M − d components are projected to zero), and finally rotated in M -space (by
U) to give b.

A summary of some useful properties of the SVD:

• The rank of X is d, the number of nonzero singular values. The SVD is one of the
numerically most reliable techniques to establish the rank of a matrix.

• X = UΣVH ⇔ XV = UΣ , X̂V̂ = ÛΣ̂.

The columns of Û are an orthonormal basis for the range of X. The columns of V̂⊥ are
an orthonormal basis for the kernel of X.

• The norm of X or XH is ‖X ‖ = ‖XH ‖ = σ1, the largest singular value. The norm is
attained on the corresponding singular vectors u1 and v1:

Xv1 = u1σ1, X
H
u1 = v1σ1.

• For an arbitrary matrix X, perhaps of full rank, the best rank-d approximant X̂ is obtained
by computing X = UΣVH, and then setting all but the first d singular values in Σ equal
to zero:

X̂ = ÛΣ̂V̂
H

,
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u1σ1

√
2

u2σ2

√
2

x2

x1

Figure 2.1. Construction of the left singular vectors and values of the matrix X = [x1 x2],

where x1 and x2 have equal length.

The approximation error in Frobenius norm and operator norm is given by

‖X − X̂ ‖2
F =

N∑

i=d+1

σ2
i

‖X − X̂ ‖2 = σ2
d+1

The QR factorization can be used as a start in the computation of the SVD of a tall matrix X.
We first compute

X = Q̂R̂ .

The next step is to continue with an SVD of R̂:

R̂ = ÛRΣ̂RV̂
H

R ,

so that the SVD of X is
X = (Q̂ÛR)Σ̂RV̂

H

R ,

The preprocessing by QR in computing the SVD is useful because it reduces the size from X to
that of R̂, and obviously, X and R̂ have the same singular values and right singular vectors.

Example 2.1. Figure 2.1 shows the construction of the left singular vectors of a matrix
X = [x1 x2], whose columns x1 and x2 are of equal length. The largest singular
vector u1 is in the direction of the sum of x1 and x2, i.e., the “common” direction
of the two vectors, and the corresponding singular value σ1 is equal to σ1 = ‖x1 +
x2 ‖/

√
2. On the other hand, the smallest singular vector u2 is dependent on the

difference x2 − x1, as is its corresponding singular value: σ2 = ‖x2 − x1 ‖/
√

2. If
x1 and x2 become more aligned, then σ2 will be smaller and X will be closer to a
singular matrix. Clearly, u2 is the most sensitive direction for perturbations on x1

and x2.

An example of such a matrix could be A = [a(θ1) a(θ2)], where θ is the direction
at which a signal hits an antenna array. If two directions are close together, then
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Table 2.1. Singular values of XM,N .

M = 3, σ1 = 3.44 M = 3, σ1 = 4.86

N = 3 σ2 = 0.44 N = 6 σ2 = 0.63

M = 6, σ1 = 4.73

N = 3 σ2 = 1.29

θ1 ≈ θ2 and a(θ1) points in about the same direction as a(θ2), which will be the
direction of u1. The smallest singular value, σ2, is dependent on the difference of
the directions of a(θ1) and a(θ2).

For further illustration, consider the following small numerical experiment. Consider
a uniform linear array with ∆ sin(θ1) = 0 and ∆ sin(θ2) = 0.05, and construct M×N
matrices X = [a(θ1) a(θ2)]S, where SSH = NI. Since (1/

√
N)S is co-isometric, the

singular values of X are those of A = [a(θ1) a(θ2)] times
√

N . The two non-zero
singular values of X for some values of M, N are given in Table 2.1. It is seen that
doubling M almost triples the smallest singular value, whereas doubling N only
increases the singular values by a factor

√
2, which is because the matrices have

larger size.

2.4 PSEUDO-INVERSE

Consider a rank-d M × N matrix X. In general, since X may be rank-deficient or non-square,
the inverse of X does not exist; i.e., for a given vector b, we cannot always find a vector a such
that b = Xa.

If X is tall but of full rank, the pseudo-inverse of X is X† = (XHX)−1XH. It satisfies

X†X = IN

XX† = Pc

Thus, X† is an inverse on the “short space”, and XX† is a projection onto the column span of
X. It is easy to verify that the solution to b = Xa is given by a = X†b.

If X is rank deficient, then XHX is not invertible, and there is no exact solution to b = Xa. In
this case, we can resort to the Moore-Penrose pseudo-inverse of X, also denoted by X†. It can
be defined in terms of the “economy size” SVD X = ÛΣ̂V̂H (equation (2.1)) as

X† = V̂Σ̂
−1Û

H
.

This pseudo-inverse satisfies the properties

1. XX†X = X 3. XX† = Pc

2. X†XX† = X† 4. X†X = Pr
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which constitute the Moore-Penrose inverse in the traditional way.

These equations show that, in order to make the problem b = Xa solvable, a solution can be
forced to an approximate problem by projecting b onto the column space of X:

b′ = Pcb ,

after which b′ = Xa has solution

a = X†b′ .

The projection is in fact implicitly done by just taking a = X†b: from properties 1 and 3 of the
list above, we have that

a = X†b′ = X†XX†b = X†b

It can be shown that this solution a is the solution of the (Least Squares) minimization problem

min
a

‖b − Xa ‖2 ,

where a is chosen to have minimal norm if there is more than one solution (the latter requirement
translates to a = Pra).

Some other properties of the pseudo-inverse are

• The norm of X† is ‖X† ‖ = σ−1
d .

• The condition number of X is c(X) := σ1

σd
.

If it is large, then X is hard to invert (X† is sensitive to small changes).

Total Least Squares Now, suppose that instead of a single vector b we are given an (M ×N)-
dimensional matrix Y, the columns of which are not all in the column space of the matrix X.
We want to force solutions to XA = Y. Clearly, we can use a least squares approximation
Ŷ = PXY to force the columns of Ŷ to be in the d-dimensional column space of X. This is
reminiscent to the LS application above, but just one way to arrive at X and Y having a common
column space, in this case by only modifying Y. There is another way, called Total Least Squares
(TLS) which is effectively described as projecting both X and Y onto some subspace that lies
between them, and that is “closest” to the column spaces of the two matrices. To implement
this method, we compute the SVD

[X Y] = [Û Û⊥] Σ

[
V̂H

(V̂⊥)H

]
= ÛΣ̂ [V̂

H

1 V̂
H

2 ] + Û⊥
Σ̂
⊥(V̂⊥)

H

and define the projection Pc = ÛÛH. We now take the TLS (column space) approximations
to be X̂ = PcX = ÛΣ̂V̂H

1 and Ŷ = PcY = ÛΣ̂V̂H

2 , where V̂1 and V̂2 are the partitions of V̂
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corresponding to X and Y respectively. X̂ and Ŷ have the same column span defined by Û,
and are in fact solutions to

min
[X̂ Ŷ] rank N

‖ [X Y] − [X̂ Ŷ] ‖2
F

and A satisfying X̂A = Ŷ is obtained as A = X̂†Ŷ. This A is the TLS solution of XA ≈ Y.
Instead of asking for rank N , we might even insist on a lower rank d.

2.5 THE EIGENVALUE PROBLEM

The eigenvalue problem for a matrix A is

Ax = λx ⇔ (A − λI)x = 0

Any λ that makes A−λI singular is called an eigenvalue, the corresponding x is the eigenvector
(invariant vector). It has an arbitrary norm usually set equal to 1.

We can collect the eigenvectors in a matrix:

A[x1 x2 · · ·] = [x1 x2 · · ·]



λ1
λ2

. . .




⇔ AT = TΛ

A regular matrix A has an eigenvalue decomposition:

A = TΛT−1 ,

where T is invertible and Λ is diagonal. This decomposition might not exist if eigenvalues are
repeated.

Schur decomposition Suppose T has a QR factorization T = QRT , so that T−1 = R−1
T QH.

Then

A = QRT ΛR−1
T Q

H
= QRQ

H
.

The factorization

A = QRQ
H

,

with Q unitary and R upper triangular, is called a Schur decomposition. One can show that this
decomposition always exists. R has the eigenvalues of A on the diagonal. Q gives information
about “eigen-subspaces” (invariant subspaces), but doesn’t contain eigenvectors.
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Connection to the SVD Suppose we compute the SVD of a matrix X, and then consider
XXH:

X = UΣVH ⇒ XXH = UΣVHVΣUH

= UΣ
2UH

= UΛUH

This shows that the eigenvalues of XXH are the singular values of X, squared (hence real). The
eigenvectors of XXH are equal to the left singular vectors of X (hence U is unitary). Since the
SVD always exists, the eigenvalue decomposition of XXH always exists. (In fact it exists for
any Hermitian matrix C = CH.)
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In this chapter, we look at elementary receiver schemes: the matched filter and Wiener filter in
their non-adaptive forms. They are suitable if we have a good estimate of the channel, or if we
know a segment of the transmitted data, e.g., because of a training sequence. These receivers
are most simple in the context of narrowband antenna array processing, and hence we place the
discussion first in this scenario. The matched filter is shown to maximize the output signal-
to-noise ratio (in the case of a single signal in noise), whereas the Wiener receiver maximizes
the output signal-to-interference plus noise (in the case of several sources in noise). We also
look at the application of these receivers as non-parametric beamformers for direction-of-arrival
estimation. Improved accuracy is possible using parametric data models and subspace-based
techniques: a prime example is the MUSIC algorithm.

General references to this chapter are [1–7].

3.1 DETERMINISTIC APPROACH TO MATCHED AND WIENER FILTERS

3.1.1 Data model and assumptions

In this chapter, we consider a simple array signal processing model of the form

x(t) =
d∑

i=1

aisi(t) + n(t) = As(t) + n(t).
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Remember that if we are perfectly synchronized, sampling si(t) at integer time instants results
in the transmitted data symbols, i.e., si(k) = si,k. Hence, sampling x(t) at integer time instants,
we obtain

xk := x(k) =
d∑

i=1

aisi(k) + n(k) :=
d∑

i=1

aisi,k + nk = Ask + nk . (3.1)

We assume that signals are received by M antennas, and that the antenna outputs (after de-
modulation, sampling, A/D conversion) are stacked into vectors xk. According to the model, xk

is a linear combination of d narrowband source signals si,k and noise nk. Often, we will consider
an even simpler case where there is only one signal in noise. In all cases, we assume that the
noise covariance matrix

Rn := E[nkn
H

k ]

is known, up to a scalar which represents the noise power. The most simple situation is spatially
white noise, for which

Rn = σ2I .

Starting from the data model (3.1), let us assume that we have collected N sample vectors. If
we store the samples in an M × N matrix X = [x0 , · · · , xN−1], then we obtain that X has a
decomposition

X = AS + N (3.2)

where the rows of S ∈ |C
d×N contain the samples of the source signals. Note that we can choose

to put the source powers in either A or S, or even in a separate factor B. Here we will assume
they are absorbed in A, thus the sources have unit powers. Sources may be considered either
stochastic (with probability distributions) or deterministic. If they are stochastic, we assume
they are zero mean, independent and hence uncorrelated,

E[sks
H

k ] = I .

If they are considered deterministic (E[sk] = sk), we will assume similarly that

lim
N→∞

1
N SSH = I .

The objective of beamforming is to construct a receiver weight vector wi such that the output
is

w
H

i xk = ŝi,k. (3.3)

In other words, we want the output of the weight vector wi to be an estimate of the i-th source.
Which beamformer is “the best” depends on the optimality criterion, of which there are many.
It also makes a difference if we wish to receive only a single signal, as in (3.3), or all d signals
jointly,

W
H
xk = ŝk, (3.4)

ET4 147 (2005): Signal Processing for Communications



3.1 Deterministic approach to Matched and Wiener filters 53

where W = [w1, · · · ,wd].

We will first look at purely deterministic techniques to estimate the beamformers: here no
explicit statistical assumptions are made on the data. The noise is viewed as a perturbation on
the noise-free data AS, and the perturbations are assumed to be small and equally important
on all entries. Then we will look at more statistically oriented techniques. The noise will be
modeled as a stochastic sequence with a joint Gaussian distribution. Still, we have a choice
whether we consider sk to be a deterministic sequence (known or unknown), or if we associate a
probabilistic distribution to it, for example Gaussian or belonging to a certain alphabet such as
{+1,−1}. In the latter case, we can often improve on the linear receiver (3.3) or (3.4) by taking
into account that the output of the beamformer should belong to this alphabet (or should have
a certain distribution). The resulting receivers will then contain some non-linear components.

In this chapter, we only consider the most simple cases, resulting in the classical linear beam-
formers.

3.1.2 Algebraic (purely deterministic) approach

Noiseless case Let us first consider the noiseless case, and a situation where we have collected
N samples. Our data model thus is

X = AS .

Our objective will be to construct a linear beamforming matrix W such that

W
H
X = S .

We consider two cases:

1. A is known, for example we know the directions and the complex gains of the sources and
have set A = [a(θ1) · · · a(θd)]diag[β1 · · · βd],

2. S is known, for example we have selected a segment of the data which contains a training
sequence for all sources. Alternatively, for discrete alphabet sources (e.g., si,k ∈ {±1}) we
can be in this situation via decision feedback.

In both cases, the problem is easily solved. If A is known, then we set

W
H

= A† , S = W
H
X .

Here, A† is the Moore-Penrose pseudo-inverse of A. If M ≥ d and the columns of A are linearly
independent, then A† is equal to the left inverse

A† = (A
H
A)−1A

H
.

Note that, indeed, under these assumptions AHA is invertible and A†A = I. If M < d then we
cannot recover the sources exactly: AHA is not invertible (it is a d × d matrix with maximal
rank M), so that A†A 6= I.
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If S is known, then we take
W

H
= SX† , A = (W

H
)† .

where X† is a right inverse of X. If N ≥ d and the rows of X are linearly independent,1 then

X† = X
H
(XX

H
)−1 .

This is verified by XX† = I. In both cases, we obtain a beamformer which exactly cancels all
interference, i.e., WHA = I.

Noisy case In the presence of additive noise, we have X = AS+N. Two types of linear least-
squares (LS) minimization problems can now be considered. The first is based on minimizing
the model fitting error,

min
S

‖X − AS‖2
F , or min

A
‖X − AS‖2

F , (3.5)

with A or S known, respectively. The second type of minimization problem is based on mini-
mizing the output error,

min
W

‖WH
X − S‖2

F , (3.6)

also with A or S known, respectively. The minimization problems are straightforward to solve,
and in the same way as before.

Deterministic model matching For (3.5) with A known we obtain

Ŝ = arg min
S

‖X − AS‖2
F ⇒ Ŝ = A†X , (3.7)

so that again WH = A†. This is known as the Zero-Forcing solution, because WHA = I: all
interfering sources are canceled. It is clear that the ZF beamformer maximizes the Signal-to-
Interference power Ratio (SIR) at the output (it is actually infinity). Note however that

W
H
X = S + A†N .

The noise contribution at the output is A†N, and if A† is large, the output noise will be large.
To get a better insight for this, introduce the “economy-size” singular value decomposition of
A,

A = UAΣAV
H

A

where we take UA : m×d with orthonormal columns, ΣA : d×d diagonal containing the nonzero
singular values of A, and VA : d × d unitary. Since

A = UAΣAV
H

A ⇒ A† = VAΣ
−1
A U

H

A ,

1In the present noiseless case, note that there are only d linearly independent rows in S and X, so for linear

independence of the rows of X we need M = d. With noise, X will have full row rank M .
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A† is large if Σ
−1
A is large, i.e., if A is ill conditioned.

Similarly, for (3.5) with S known we obtain

Â = arg min
A

‖X − AS‖2
F ⇒ Â = XS† = XS

H
(SS

H
)−1 . (3.8)

This does not specify the beamformer, but staying in the same context of minimizing ‖X−AS‖2
F,

it is natural to take again a Zero-Forcing beamformer so that WH = Â†. Asymptotically for zero
mean noise independent of the sources, this gives Â → A: we converge to the true A-matrix.

Example 3.1. The ZF beamformer satisfies WHA = I. Let w1 be the first column of
W, it is the beamformer to receive the first signal. Then

W
H
A = I ⇒ w

H

1 [a2 , · · · ,ad] = [0 , · · · ,0]

so that

w1 ⊥ {a2 , · · · , ad} .

Thus, w1 projects out all other sources, except source 1,

wH

1 x(t) =
∑d

i=1 wH

1 aisi(t) + wH

1 n(t)
= s1(t) + wH

1 n(t) .

The effect on the noise is not considered. In ill-conditioned cases (A is ill-conditioned
so that its inverse W may have large entries), w1 might give a large amplification of
the noise.

Deterministic output error minimization The second optimization problem (3.6) minimizes
the difference of the output signals to S. For known S, we obtain

W
H

= argmin
W

‖ W
H
X − S ‖2

F = SX† . (3.9)

Note that X† = XH(XXH)−1, so that

W
H

= 1
N SXH( 1

N XXH)−1 = R̂H

xsR̂
−1
x , W = R̂−1

x R̂xs .

R̂x := 1
N XXH is the sample data covariance matrix, and R̂xs := 1

N (XSH) is the sample corre-
lation matrix between the sources and the received data.

With known A, note that we cannot solve the minimization problem (3.6) since we can fit any
S. We have to put certain assumptions on S and N, for example the fact that the rows of S
and N are statistically independent from each other, and hence for large N

1
N SSH → I, 1

N NNH → σ2I, 1
N SNH → 0,
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(we assumed that the source powers are incorporated in A), so that

R̂x = 1
N XXH = 1

N ASSHAH + 1
N NNH + 1

N ASNH + 1
N NSHAH → Rx = AAH + σ2I

R̂xs = 1
N XSH = 1

N ASSH + 1
N NSH → Rxs = A

Asymptotically,

W = R−1
x Rxs = (AA

H
+ σ2I)−1A ,

where Rx = E[xxH] is the true data covariance matrix and Rxs = E[xsH] is the true correlation
matrix between the sources and the received data.2 This is known as the Linear Minimum
Mean Square Error (LMMSE) or Wiener receiver. This beamformer maximizes the Signal-to-
Interference-plus-Noise Ratio (SINR) at the output. Since it does not cancel all interference,
WHA 6= I, the output source estimates are not unbiased. However, it produces estimates of S
with minimal deviation, which is often more relevant.

3.2 STOCHASTIC APPROACH TO MATCHED AND WIENER FILTERS

3.2.1 Performance criteria

Let us now define some performance criteria, based on elementary stochastic assumptions on
the data. For the case of a single signal in noise,

xk = ask + nk , yk = w
H
xk = (w

H
a)sk + (w

H
nk) .

We make the assumptions

E[|sk|2] = 1 , E[skn
H

k ] = 0 , E[nkn
H

k ] = Rn ,

so that

E[|yk|2] = (w
H
a)(a

H
w) + w

H
Rnw .

The Signal-to-Noise Ratio (SNR) at the output can then be defined as

SNRout(w) =
E[|(wHa)sk|2]
E[|wHnk|2]

=
wHaaHw

wHRnw
.

With d signals (signal 1 of interest, the others considered interferers), we can write

xk = Ask + nk = a1s1,k + A′s′k + nk , yk = w
H
xk = (w

H
a1)s1,k + w

H
A′s′k + (w

H
nk) ,

2We thus see that even if we adopt a deterministic framework, we cannot avoid to make certain stochastic

assumptions on the data and noise.
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where A′ contains the columns of A except for the first one, and similarly for s′k. Now we can
define two criteria: the Signal-to-Interference Ratio (SIR), and the Signal-to-Interference-plus-
Noise Ratio (SINR):

SIR1(w) :=
wH(a1a

H

1 )w

wHA′A′Hw
=

wH(a1a
H

1 )w

wH(AAH − a1a
H

1 )w

SINR1(w) :=
wH(a1a

H

1 )w

wH(A′A′H + Rn)w
=

wH(a1a
H

1 )w

wH(AAH − a1a
H

1 + Rn)w
.

(3.10)

For the Zero-Forcing receiver, we have by definition (for known A)

W
H
A = I ⇒ w

H

1 A = [1, 0, · · · , 0] ⇒ w
H

1 a1 = 1 , w
H

1 A′ = [0, · · · , 0] ,

and it follows that SIR1(w1) = ∞. When W is estimated from a known S, we can only construct
an approximation of the ZF receiver. This approximate ZF receiver still maximizes the SIR, but
it is not infinity anymore.

Note that (3.10) defines only the performance with respect to the first signal. If we want to
receive all signals, we need to define a performance vector, with entries for each signal,

SIR(W) := [SIR1(w1) · · · SIRd(wd)]
SINR(W) := [SINR1(w1) · · · SINRd(wd)] .

In graphs, we would usually plot only the worst performance of each vector, or the average of
each vector.

3.2.2 Stochastic derivations (white noise)

We now show how the same ZF and Wiener receivers can be derived when starting from a
stochastic formulation.

Stochastic model matching Assume a model with d sources,

xk = Ask + nk (k = 1, · · · , N) ⇔ X = AS + N .

Suppose that A and S are deterministic, and that the noise samples are independent and iden-
tically distributed in time (temporally white), and spatially white (Rn = I) and jointly complex
Gaussian distributed, so that nk has a probability density

nk ∼ CN (0, σ2I) ⇔ p(nk) =
1√
πσ

e−
‖nk‖2

σ2 .

Because of temporal independence, the probability distribution of N samples is the product of
the individual probability distributions,

p(N) =
N∏

k=1

1√
πσ

e−
‖nk‖2

σ2 .
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Since nk = xk − Ask, the probability to receive a certain vector xk, given A and sk is thus

p(xk|A, sk) =
1√
πσ

e−
‖xk−Ask‖2

σ2

and hence

p(X|A,S) =
N∏

k=1

1√
πσ

e−
‖xk−Ask‖2

σ2 =

(
1√
πσ

)N

e−
∑N

k=1
‖xk−Ask‖2

σ2 =

(
1√
πσ

)N

e−
‖X−AS‖2

F
σ2 .

p(X|S) is called the likelihood of receiving a certain data matrix X, for a certain mixing matrix
A and a certain transmitted data matrix S. It is of course a probability density function, but
in the likelihood interpretation we regard it as a function of A and S, for an actual received
data matrix X. The Deterministic Maximum Likelihood technique estimates A and/or S as that
matrix that maximizes the likelihood of having received the actual received X, thus

(Â, Ŝ) = arg max
A,S

(
1√
πσ

)N

e−
‖X−AS‖2

F
σ2 . (3.11)

If we take the negative logarithm of p(X|A,S), we obtain what is called the negative log-
likelihood function. Since it is a monotonously growing function, taking the logarithm does not
change the location of the maximum. The maximization problem then becomes a minimization
over const + ‖X − AS‖2

F/σ2, or

(Â, Ŝ) = arg min
A,S

‖X − AS‖2
F . (3.12)

This is the same model fitting problem as we had before in (3.5). Thus, the deterministic ML
problem is equivalent to the LS model fitting problem in the case of white (temporally and
spatially) Gaussian noise.

Stochastic output error minimization In a statistical framework, the output error problem
(3.6) becomes

min
wi

E[|wH

i xk − si,k|2] .

The cost function is known as the Linear Minimum Mean Square Error. Note that the full
equalizer matrix W can then be obtained by stacking the solutions for the different sources:
W = [w1 · · · wd]. The above cost function can be worked out as follows:

J(wi) = E[|wH

i xk − si,k|2]
= wH

i E[xkx
H

k ]wi − wH

i E[xks̄i,k] − E[si,kx
H

k ]w + E[|si,k|2]
= wH

i Rxwi − wH

i rxs,i − rH

xs,iwi + 1

Note that we have assumed that E[|si,k|2] = 1 and that rxs,i = E[xks̄i,k] is the i-th column of
Rxs = E[xks

H].
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If si,k is deterministic, then J = Jk depends on si,k, and we need to work with an average over
N samples, J̄ = 1

N

∑N−1
k=0 Jk. For large N and i.i.d. assumptions on si,k, the result will be the

same.

Now differentiate with respect to wi. This is a bit tricky since wi is complex and functions
of complex variables may not be differentiable (a simple example of a non-analytic function is
f(z) = z̄). There are various approaches (e.g. [1, 8]). A consistent approach is to regard wi

and w̄i as independent variables. Let wi = u + jv with u and v real-valued, then the complex
gradients to wi and w̄i are defined as [8]

∇wiJ =
1

2
(∇uJ − j∇vJ) =

1

2




∂
∂u1

J
...

∂
∂ud

J


 − 1

2
j




∂
∂v1

J
...

∂
∂vd

J




∇w̄iJ =
1

2
(∇uJ + j∇vJ) =

1

2




∂
∂u1

J
...

∂
∂ud

J


 +

1

2
j




∂
∂v1

J
...

∂
∂vd

J




with properties

∇wiw
H

i rxs,i = 0 , ∇wir
H

xs,iwi = r̄xs,i , ∇wiw
H

i Rxwi = RT
x w̄i

∇w̄i w
H

i rxs,i = rxs,i , ∇w̄i r
H

xs,iwi = 0 , ∇w̄i w
H

i Rxwi = Rxwi.

It can further be shown that for a stationary point, it is necessary and sufficient that either
∇wJ = 0 or that ∇w̄J = 0: the two are equivalent. Since the latter expression is more simple,
and because it specifies the maximal rate of change, we keep from now on the definition for the
gradient

∇J(w) ≡ ∇w̄J(w) , (3.13)

and we obtain

∇J(wi) = Rxwi − rxs,i .

The minimum of J(wi) is attained for

∇wiJ = 0 ⇒ wi = R−1
x rxs,i ,

or if all sources have to be detected

W = R−1
x [rxs,1 · · · rxs,d] = R−1

x Rxs.

We thus obtain the Wiener receiver.

The LMMSE cost function is also called Minimum Variance. This is in fact a misnomer: the
expression is not really that of a variance because the error E[wHxk − sk] 6= 0. In fact, for the
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Wiener receiver, a single signal in noise, and sk considered deterministic (E[sk] = sk),

E[yk] = E[wHxk]
= E[rH

xsR
−1
x (ask + nk)]

= aH(aaH + σ2I)−1ask

= aHa(aHa + σ2)−1sk

= a
H
a

aHa+σ2
sk .

Thus, the expected value of the output is not sk, but a scaled-down version of it.

3.2.3 Colored noise

Let us now see what changes in the above when the noise is not white, but has a variance

E[nkn
H

k ] = Rn .

We assume that we know the variance. In that case, we can prewhiten the data with a square-root

factor R
−1/2
n :

xk = Ask + nk ⇒ R−1/2
n xk︸ ︷︷ ︸ = R−1/2

n A︸ ︷︷ ︸ sk + R−1/2
n nk︸ ︷︷ ︸

xk = Ask + nk

Note that now
Rn = E[nknk

H
] = R−1/2

n RnR
−1/2
n = I

so that the noise nk is white. At this point, we are back on familiar grounds. The ZF equalizer
becomes

sk = A†Hxk = (A
H
A)−1A

H
xk = (A

H
R−1

n A)−1A
H
R−1

n xk

⇒ W = R−1
n A(A

H
R−1

n A)−1. (3.14)

The Wiener receiver on the other hand will be the same, since Rn is not used at all in the
derivation. This can also be checked:

W = R−1
x Rxs = (R−1/2

n RxR
−1/2
n )−1R−1/2

n Rxs = R1/2
n R−1

x Rxs

⇒ W = R−1/2
n W = R−1

x Rxs.

3.3 OTHER INTERPRETATIONS OF MATCHED FILTERING

3.3.1 Maximum Ratio Combining

Consider a special case of the previous, a single signal in white noise,

xk = ask + nk , E[nkn
H

k ] = σ2I .
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As we showed before, the ZF beamformer is given by

w = a(a
H
a)−1 = γ1a

where γ1 is a scalar. Since a scalar multiplication does not change the output SNR, the optimal
beamformer for s in this case is given by

wMF = a

which is known as a matched filter or a classical beamformer. It is also known as Maximum
Ratio Combining (MRC).

With non-white noise,
xk = ask + nk , E[nn

H
] = Rn

we have seen in (3.14) that

w = R−1
n a(a

H
R−1

n a)−1 = γ2R
−1
n a .

Thus, the matched filter in non-white noise is

wMF = R−1
n a .

We can proceed similarly with the Wiener receiver. In white noise,

w = R−1
x rxs

= (aaH + σ2I)−1a
= a(aHa + σ2)−1

∼ a .

It is equal to a multiple of the matched filter. In colored noise, we obtain similarly:

w = R−1
x rxs

= (aaH + Rn)−1a
= R−1

n a(aHR−1
n a + 1)−1

∼ R−1
n a .

This is equal to a multiple of the matched filter for colored noise.

The colored noise case is relevant also for the following reason: with more than one signal, we
can write the model as

xk = Ask + nk = a1s1,k + (A′s′k + nk) .

This is of the form
xk = ask + nk , Rn = A′A′H + σ2I

where the noise is now not white, but colored due to the contribution of the interfering sources.

The conclusion is quite interesting:
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For the reception of a single source out of interfering sources plus noise, the ZF
receiver, matched filter or MRC: w = R−1

n a, and the Wiener receiver: w = R−1
x rxs,

are all equal to a scalar multiple of each other, and hence will asymptotically give
the same performance.

The above are examples of non-joint receivers: the interference is lumped together with the noise,
and there might as well be many more interferers than antennas. Intuitively, one could think that
performing a joint estimation of all the sources would yield an improved performance. However,
since the Wiener filter optimally balances interference suppression and noise suppression, it does
not make a difference whether we design our Wiener filter by lumping the interference together
with the noise, or not. Hence, the non-joint and joint Wiener filter lead to the same performance.
This is not true for the ZF receiver.

Example 3.2. Consider a single source in white noise:

x(t) = as(t) + n(t) , Rn = σ2I .

Suppose the signal is normalized to have unit-power E[|s(t)|2] = 1. Then

SNRin =
1

σ2
.

This is the SNR at each element of the array.

If we choose the matched filter, or MRC, i.e., w = a, then

y(t) = wHx(t) = a
H
as(t) + a

H
n(t) = ‖a‖2s(t) + a

H
n(t)

then

SNRout =
‖a‖4

aHσ2Ia
=

‖a‖4

‖a‖2σ2
= ‖a‖2 · SNRin .

The factor ‖a‖2 is the array gain.

3.3.2 Maximizing the output SNR

For a single signal in noise, the matched filter w = R−1
n a maximizes the output SNR. This is

derived as follows. Similarly as in the preceding example, we have

x(t) = as(t) + n(t) .

Assume again that E[|s(t)|2] = 1, then Rx = Ra + Rn, with

Ra = aa
H

, Rn = E[nkn
H

k ] .

The output SNR after beamforming is equal to

SNRout(w) =
wHRaw

wHRnw
.
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We now would like to find the beamformer that maximizes SIRout, i.e.,

w = arg max
w

wHRaw

wHRnw
.

The expression is known as a Rayleigh quotient, and the solution is known to be given by the
solution of the eigenvalue equation

R−1
n Raw = λmaxw . (3.15)

This can be seen as follows: suppose that Rn = I, then the equation is

max
w

w
H
Raw .

Introduce an eigenvalue decomposition for Ra = UΛUH, then

max
w

(w
H
U)Λ(U

H
w) .

Let λ1 be the largest eigenvalue ((1, 1)-entry of Λ), then it is clear that the maximum of the
expression is given by choosing wHU = [1 0 · · · 0]. Thus, the optimal w is the eigenvector
corresponding to the largest eigenvalue, and satisfies the eigenvalue equation Raw = λ1w. If
Rn 6= I, then we can first whiten the noise to obtain the result in (3.15).

The solution of (3.15) can be found in closed form, by inserting Ra = aaH. We obtain

R−1
n Raw = λmaxw

⇔ R−1
n aaHw = λmaxw

⇔ (R
−1/2
n a)(aHR

−1/2
n )(R

1/2
n w) = λmax(R

1/2
n w)

⇔ aaHw = λmaxw
⇔ w = a , λmax = aHa

and it follows that

w = R−1
n a

which is, as promised, the matched filter in colored noise.

3.3.3 LCMV – MVDR – GSC – Capon

A related technique for beamforming is the so-called Linearly constrained Minimum Variance
(LCMV), also known as Minimum Variance Distortionless Response (MVDR), Generalized Side-
lobe Canceling (GSC), and Capon beamforming (in the French literature). In this technique, it is
again assumed that we have a single source in colored noise (this might contain other interferers
as well),

xk = ask + nk .
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Figure 3.1. The Generalized Sidelobe Canceler

If a is known, then the idea is that we constrain the beamformer w to

w
H
a = 1

i.e., we have a fixed response towards the source. The remaining freedom is used to minimize
the total output power (“response” or “variance”) after beamforming:

min
w

w
H
Rxw such that w

H
a = 1 .

The solution can be found in closed form using Lagrange multipliers and is given by

w = R−1
x a(a

H
R−1

x a)−1 .

Thus, w is a scalar multiple of the Wiener receiver.

This case may be generalized by introducing a constraint matrix C : M × L (M > L) and an
L-dimensional vector f , and asking for CHw = f . The solution to

min
w

w
H
Rxw such that C

H
w = f

is given by

w = R−1
x C(C

H
R−1

x C)−1f .

Generalized Sidelobe Canceler The generalized sidelobe canceler (GSC) represents an alter-
native formulation of the LCMV problem, which provides insight, is useful for analysis, and can
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simplify LCMV beamformer implementation. Essentially, it is a technique to convert a con-
strained minimization problem into an unconstrained form. Suppose we decompose the weight
vector w into two orthogonal components, w0 and −v (w = w0−v), that lie in the range and null
space of C and CH, respectively. These subspaces span the entire space so this decomposition
can be used to represent any w. Since CHv = 0, we must have

w0 = C(C
H
C)−1f (3.16)

if w is to satisfy the constraints. (3.16) is the minimum norm solution to the under-determined
system CHw0 = f . The vector v is a linear combination of the columns of an M × (M − L)
matrix Cn, and v = Cnwn; provided the columns of Cn form a basis for the null space of CH.
The matrix Cn can be obtained from C using any of several orthogonalization procedures, for
example the QR factorization or the SVD. The structure of the beamformer using the weight
vector w = w0 − Cnwn is depicted in figure 3.1. The choice for w0 and Cn implies that w
satisfies the constraints independent of wn and reduces the LCMV problem to the unconstrained
problem

min
wn

[w0 − Cnwn]
H
Rx[w0 − Cnwn] .

The solution is

wn = (C
H

nRxCn)−1C
H

nRxw0 .

The primary advantage of this implementation stems from the fact that the weights wn are
unconstrained and a data independent beamformer w0 is implemented as an integral part of the
adaptive beamformer. The unconstrained nature of the adaptive weights permits much simpler
adaptive algorithms to be employed and the data independent beamformer is useful in situations
where adaptive signal cancellation occurs.

Example 3.3. Reference channels – Multiple sidelobe canceler

A special case of the LCMV is that where there is a primary channel x0(t), receiving
a signal of interest plus interferers and noise, and a collection of reference antennas
x(t), receiving only interference and noise. For example, in hands-free telephony in a
car, we may have a microphone close to the speaker, and other microphones further
away from the speaker and closer to the engine and other noise sources. Or we may
have a directional antenna (parabolic dish) and an array of omnidirectional antennas.
The objective is to subtract from the primary channel a linear combination of the
reference antennas such that the output power is minimized. If indeed the signal
of interest is not present on the reference antennas, the SINR of this signal will be
improved. (If the signal is present at the reference antennas, then of course it will
be canceled as well!)

Call the primary sensor signal x0 and the reference signal vector x. Then the objec-
tive is

min
w

E‖x0 − w
H
x ‖2 .
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Figure 3.2. The Multiple Sidelobe Canceller: interference is estimated from a reference an-

tenna array and subtracted from the primary antenna x0.

The solution of this problem is given by

w = R−1
x r, Rx = E[xx

H
], r := E[xx̄0] .

This technique is called the Multiple Sidelobe Canceler (Applebaum 1976). It is a
special case of the LCMV beamformer, which becomes clear if we construct a joint
data vector

x′ =

[
x0

x

]
, w′ =

[
1

−w

]
, c =

[
1
0

]

The constraint is (w′)Hc = 1.

3.4 PREWHITENING FILTER STRUCTURE

Subspace-based prefiltering In the noise-free case with less sources than sensors, X = AS
is rank deficient: its rank is d (the number of signals) rather than m (the number of sensors).
As a consequence, once we have found a beamformer w such that wHX = s, one of the source
signals, then we can add any vector w0 such that wH

0 X = 0 to w, and obtain the same output.
The beamforming solutions are not unique.

The desired beamforming solutions are all in the column span of A. Indeed, any component
orthogonal to this span will not contribute at the output. The most easy way to ensure that our
solutions will be in this span is by performing a dimension-reducing prefiltering. Let F be any
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M × d matrix such that span(F) = span(A). Then all beamforming matrices W in the column
span of A are given by

W = FW

where W is a d × d matrix, nonsingular if the beamformers are linearly independent. We will
use the underscore to denote prefiltered variables. Thus, the prefiltered noisy data matrix is

X := F
H
X

with structure
X = AS + N , where A := F

H
A , N := F

H
N .

X has only d channels, and is such that WHX = WHX. Thus, the columns of W are d-
dimensional beamformers on the prefiltered data X, and for any choice of W the columns of the
effective beamformer W are all in the column span of A, as desired.

To describe the column span of A, introduce the “economy-size” singular value decomposition
of A,

A = UAΣAV
H

A

where we take UA : m×d with orthonormal columns, ΣA : d×d diagonal containing the nonzero
singular values of A, and VA : d × d unitary. Also let U⊥

A be the orthonormal complement of
UA. The columns of UA are an orthonormal basis of the column span of A. The point is that
even if A is unknown, UA can be estimated from the data, as described below (and in more
detail in section 3.5).

We assume that the noise is spatially white, with covariance matrix σ2I. Let R̂x = 1
N XXH be

the noisy sample data covariance matrix, with eigenvalue decomposition

R̂x = ÛΛ̂Û
H

= ÛΣ̂
2Û

H
. (3.17)

Here, Û is M × M unitary, and Σ̂ is M × M diagonal. Equivalently, these factors follow from
an SVD of the data matrix X directly:

1√
N

X = ÛΣ̂V̂H

We collect the d largest singular values into a d × d diagonal matrix Σ̂s, and collect the corre-
sponding d eigenvectors into Ûs. Asymptotically, Rx satisfies Rx = AAH +σ2I, with eigenvalue
decomposition

Rx = UAΣ
2
AU

H

A + σ2I = UA(Σ2
A + σ2I)U

H

A + σ2U⊥
AU⊥H

A . (3.18)

Since R̂x → Rx as the number of samples N grows, we have that ÛsΣ̂
2
sÛ

H

s → UA(Σ2
A +σ2I)UH

A,
so that Ûs is an asymptotically unbiased estimate of UA. Thus UA and also Σ and Λ can
be estimated consistently from the data, by taking sufficiently many samples. In contrast, VA

cannot be estimated like this: this factor is on the “inside” of the factorization AS = UAΣAVH

AS
and as long as S is unknown, any unitary factor can be exchanged between VA and S.
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Figure 3.3. Beamforming prefiltering structure

Even if we choose F to have the column span of Ûs, there is freedom left. As we will show, a
natural choice is to combine the dimension reduction with a whitening of the data covariance
matrix, i.e., such that Rx := 1

N XXH becomes unity: Rx = I. This is achieved if we define F as

F = ÛsΣ̂
−1
s . (3.19)

Without dimension reduction, F = ÛΣ̂
−1 is a square root factor3 of R̂−1

x , i.e., R̂−1
x = FFH.

After this preprocessing, the Wiener filter is simply given by

W = A

at least asymptotically. Indeed,

W = FW = FF
H
A

and asymptotically FFH = (AHA + σ2I)−1PA. Since PAA = A, the result follows. For finite
samples, the dimension reduction gives a slight difference.

If the noise is colored with covariance matrix σ2Rn, where we know Rn but perhaps not the

noise power σ2, then we first whiten the noise by computing R
−1/2
n X, and continue as in the

white noise case. The structure of the resulting beamformer is shown in figure 3.3.

Direct matched filtering Another choice for F that reduces dimensions and that is often taken
if (an estimate of) A is known is by simply setting

F = A

The output after this filter becomes

X = A
H
X = (A

H
A)S + A

H
N

3Square root factors are usually taken symmetric, i.e., R̂
1/2
x R̂

1/2
x = R̂x and R̂

1/2 H
x = R̂

1/2
x , but this is not

necessary. F is a non-symmetric factor.
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The noise is now non-white, it has covariance AHA.

We can whiten it by multiplying by a factor (AHA)−1/2. It is more convenient to introduce an
SVD A = UAΣAVH

A, and use a non-symmetrical factor Σ
−1
A VH

A. Note that Σ
−1
A VH

AAH = UH

A.
This gives

X = U
H

AX = (U
H

AA)S + U
H

AN = (ΣAV
H

A)S + U
H

AN .

The noise is white again, and A = ΣAVH

A. If we subsequently want to apply a Wiener receiver
in this prefiltered domain, it is given by

W = (AA
H

+ σ2I)−1A = (Σ2
A + σ2I)−1

ΣAV
H

A

Conclusion

We can do the following forms of prefiltering:

• F = A. After this the noise is nonwhite.

• F = A(AHA)−1/2 = UA = Us. After this the noise is white, the Wiener
receiver is obtained by setting W = (AAH + σ2I)−1A.

• F = Σ̂
−1
s Ûs. The noise becomes nonwhite, but the data is whitened, R̂x = I.

The Wiener receiver is obtained by W = A.

3.5 EIGENVALUE ANALYSIS OF RX

So far, we have looked at the receiver problem from a rather restricted viewpoint: the beam-
formers were based on the situation where there is a single source in noise. In the next section
we will also consider beamforming algorithms that can handle more sources. These are based
on an eigenvalue analysis of the data covariance matrix, which is introduced in this section.

Let us first consider the covariance matrix due to d sources and no noise,

Rx = ARsA
H

where Rx has size M ×M , A has size M × d and Rs has size d× d. If d < M , then the rank of
Rx is d since A has only d columns. Thus, we can estimate the number of narrow-band sources
from a rank analysis. This is also seen from an eigenvalue analysis: let

Rx = UΛU
H

be an eigenvalue decomposition of Rx, where the M × M matrix U is unitary (UUH = I,
UHU = I) and contains the eigenvectors, and the M × M diagonal matrix Λ contains the
corresponding eigenvalues in non-increasing order (λ1 ≥ λ2 ≥ · · · ≥ λM ≥ 0). Since the rank is
d, there are only d nonzero eigenvalues. We can collect these in a d× d diagonal matrix Λs, and
the corresponding eigenvectors in a M × d matrix Us, so that

Rx = UsΛsU
H

s . (3.20)
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The remaining M − d eigenvectors from U can be collected in a matrix Un, and they are
orthogonal to Us since U = [Us Un] is unitary. The subspace spanned by the columns of Us is
called the signal subspace, the orthogonal complement spanned by the columns of Un is known
as the noise subspace (although this is a misnomer since here there is no noise yet and later the
noise will be everywhere and not confined to the subspace). Thus, in the noise-free case,

Rx = UΛU
H

= [Us Un]

[
Λs 0

0 0

] [
UH

s

UH

n

]

In the presence of white noise,

Rx = AsRsA
H

s + σ2IM .

In this case, Rx is full rank: its rank is always M . However, we can still detect the number of
sources by looking at the eigenvalues of Rx. Indeed, the eigenvalue decomposition is derived as
(expressed in terms of the previous decomposition (3.20) and using the fact that U = [Us Un]
is unitary: UsU

H

s + UnU
H

n = IM )

Rx = AsRsA
H

s + σ2IM

= UsΛsU
H

s + σ2(UsU
H

s + UnU
H

n)
= Us(Λs + σ2Iq)U

H

s + Un(σ2IM−d)U
H

n

= [Us Un]

[
Λs + σ2Iq 0

0 σ2IM−d

] [
UH

s

UH

n

]

=: UΛUH

(3.21)

hence Rx has M −d eigenvalues equal to σ2, and d that are larger than σ2. Thus, we can detect
the number of signals d by comparing the eigenvalues of Rx to a threshold defined by σ2.

A physical interpretation of the eigenvalue decomposition can be as follows. The eigenvectors
give an orthogonal set of “directions” (spatial signatures) present in the covariance matrix,
sorted in decreasing order of dominance. The eigenvalues give the power of the signal coming
from the corresponding directions, or the power of the output of a beamformer matched to that
direction. Indeed, let the i’th eigenvector be ui, then this output power will be

u
H

i Rui = λi .

The first eigenvector, u1, is always pointing in the direction from which most energy is coming.
The second one, u2, points in a direction orthogonal to u1 from which most of the remaining
energy is coming, etcetera.

If only (spatially white) noise is present but no sources, then there is no dominant direction,
and all eigenvalues are equal to the noise power. If there is a single source with unit power and
spatial signature a, then the covariance matrix is Rx = aaH + σ2I. It follows from the previous
that there is only one eigenvalue larger than σ2. The corresponding eigenvector is u1 = a 1

‖a‖ ,
and is in the direction of a. The power coming from that direction is

λ1 = u
H

1Rxu1 = ‖a‖2 + σ2 .
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Figure 3.4. Behavior of singular values.

Since there is only one source, the power coming from any other direction orthogonal to u1 is
σ2, the noise power. Since u1 = a 1

‖a‖ ,

aHRxa

aHa
=

uH

1Rxu1

uH

1u1
= λ1 .

Thus, the result of using the largest eigenvector as a beamformer is the same as the output
power of a matched filter where the a-vector of the source is known.

With more than one source, this generalizes. Suppose there are two sources with unit powers,
and spatial signatures a1 and a2. If the spatial signatures are orthogonal, aH

1a2 = 0, then u1

will be in the direction of the strongest source, number 1 say, and λ1 will be the corresponding
power, λ1 = ‖a1‖2 + σ2. Similarly, λ2 = ‖a2‖2 + σ2.

In general, the spatial signatures are not orthogonal to each other. In that case, u1 will point
into the direction that is common to both a1 and a2, and u2 will point in the remaining direction
orthogonal to u1. The power λ1 coming from direction u1 will be larger than before because it
combines power from both sources, whereas λ2 will be smaller.

Example 3.4. Instead of the eigenvalue decomposition of R̂x, we may also compute the
singular value decomposition of X:

X = UΣV
H

Here, U : M × M and V : N × N are unitary, and Σ : M × N is diagonal. Since

Rx = 1
N XXH = 1

N UΣ
2UH

it is seen that U contains the eigenvectors of R̂x, whereas 1
N Σ

2 = Λ are the eigen-
values. Thus, the two decompositions give the same information (numerically, it is
often better to compute the SVD).

Figure 3.4 shows singular values of A for d = 2 sources, a uniform linear array with
M = 5 antennas, and N = 10 samples, for
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Figure 3.5. Eigenstructure as a function of time

1. well separated angles: large gap between signal and noise singular values,

2. signals from close directions, resulting in a small signal singular value,

3. increased noise level, increasing noise singular values.

Example 3.5. The covariance matrix eigenvalue structure can be nicely illustrated on
data collected at the Westerbork telescope array. We selected a narrow band slice
(52 kHz) of a GSM uplink data file, around 900 MHz. In this subband we have two
sources: a continuous narrow band (sine wave) signal which leaked in from a local
oscillator, and a weak GSM signal. From this data we computed a sequence of short
term data covariance matrices R̂0.5ms

x based on 0.5 ms averages. Figure 3.5 shows
the time evolution of the eigenvalues of these matrices. The largest eigenvalue is due
to the CW signal and is always present. The GSM source is intermittent: at time
intervals where it is present the number of large eigenvalues increases to two. The
remaining eigenvalues are at the noise floor, σ2. The small step in the noise floor
after 0.2 s is due to a periodically switched calibration noise source at the input of
the telescope front ends.

3.6 BEAMFORMING AND DIRECTION ESTIMATION

In the previous sections, we have assumed that the source matrix S or the array matrix A is
known. We can now generalize the situation and only assume that the array response is known
as a function of the direction parameter θ. Then the directions of arrival (DOA’s) of the signals
are estimated and used to generate the beamformer weights. The beamformers are in fact the
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same as we derived in the previous section, except that we specify them in terms of a(θ) and
subsequently scan θ to find directions where there is “maximal response” (e.g., in the sense of
maximal output SNR).

3.6.1 The classical beamformer

The weights in a data independent beamformer are designed so the beamformer response ap-
proximates a desired response independent of the array data or data statistics. The design
objective—approximating a desired response—is the same as that for classical FIR filter design.

In spatial filtering one is often interested in receiving a signal arriving from a known location
point θ0. Assuming the signal is narrowband, a common choice for the beamformer weight
vector is the array response vector a(θ0). This is called the classical beamformer, or the Bartlett
beamformer; it is precisely the same as the matched filter assuming spatially white noise.

In direction finding using classical beamforming, we estimate the directions of the sources as
those that maximize the output power of the beamformer when pointing in a scanning direction
θ (and normalizing the output by the array gain):

θ̂ = max
θ

a(θ)HRxa(θ)

a(θ)Ha(θ)
.

The expression is a spatial spectrum estimator. An example of the spectrum obtained this way
is shown in figure 3.6, see also chapter 1. With only N samples available, we replace Rx by the
sample covariance matrix, R̂x. For multiple signals we choose the d largest local maxima.

This technique is equivalent to maximizing the output SNR in case there is only 1 signal in white
noise. If the noise is colored, the denominator should actually be replaced by a(θ)HRna(θ). If the
noise is white but there are interfering sources, our strategy before was to lump the interferers
with the noise. However, in the present situation we do not know the interfering directions
or a(θ2), · · · ,a(θd), so this is impossible. This shows that with multiple sources, the classical
beamforming technique gives a bias to the direction estimate.

3.6.2 The MVDR

As discussed before, in the MVDR technique we try to minimize the output power, while con-
straining the power towards the direction θ:

θ̂ = max
θ

{min
w

w
H
R̂xw subject to w

H
a(θ) = 1} .

This yields

w =
R̂−1

x a(θ)

a(θ)HR̂−1
x a(θ)

and thus the direction estimate is

θ̂ = max
θ

1

a(θ)HR̂−1
x a(θ)

.
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Figure 3.6. Spatial spectra corresponding to the classical beamformer, MVDR, and MUSIC.

The DOA’s are estimated as the maxima of the spectra.

For multiple signals choose again the d largest local maxima. The MVDR is also illustrated in
figure 3.6.

3.6.3 The MUSIC algorithm

The classical beamformer and the MVDR have a poor performance in cases where there are sev-
eral closely spaced sources. We now consider more advanced techniques based on the eigenvalue
decomposition of the covariance matrix, viz. equation (3.21),

Rx = AsRsA
H

s + σ2IM

= Us(Λs + σ2Iq)U
H

s + Un(σ2IM−d)U
H

n

As discussed before, the eigenvalues give information on the number of sources (by counting how
many eigenvalues are larger than σ2). However, the decomposition shows more than just the
number of sources. Indeed, the columns of Us span the same subspace as the columns of A. This
is clear in the noise-free case (3.20), but the decomposition (3.21) shows that the eigenvectors
contained in Us and Un respectively are the same as in the noise-free case. Thus,

span(Us) = span(A) , U
H

nA = 0 . (3.22)

Given a correlation matrix R̂x estimated from the data, we compute its eigenvalue decomposi-
tion. From this we can detect the rank d from the number of eigenvalues larger than σ2, and
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we can estimate Us and hence the subspace spanned by the columns of A. Although we cannot
directly identify each individual column of A, its subspace estimate can nonetheless be used to
determine the directions, since we know that

A = [a(θ1) , · · · , a(θd)]

If a(θ) is known as a function of θ, then we can select the unknown parameters [θ1 , · · · , θd] to
make the estimate of A fit the subspace Us. Several algorithms are based on this idea. Below we
discuss an effective algorithm that is widely used, the MUSIC (Multiple SIgnal Classification)
algorithm.

Note that it is crucial that the noise is spatially white. For colored noise, an extension (whitening)
is possible but we have to know the coloring.

Assume that d < M . Since col(Us) = col{a(θ1), · · · ,a(θd)}, we have

U
H

n a(θi) = 0 , (1 ≤ i ≤ d) (3.23)

The MUSIC algorithm estimates the directions of arrival by choosing the d lowest local minima
of the cost function

JMUSIC(θ) =
‖ÛH

na(θ)‖2

‖a(θ)‖2
=

a(θ)HÛnÛ
H

na(θ)

a(θ)Ha(θ)
(3.24)

where ÛH

n is the sample estimate of the noise subspace, obtained from an eigenvalue decomposi-
tion of R̂x. To obtain a ‘spectral-like’ graph as before (it is called a pseudo-spectrum), we plot
the inverse of JMUSIC(θ). See figure 3.6. Note that this eigenvalue technique gives a higher
resolution than the original classical spectrum, also because its sidelobes are much more flat.

Note, very importantly, that as long as the number of sources is smaller than the number of
sensors (d < M), the eigenvalue decomposition of the true Rx allows to estimate exactly the
DOAs. This means that if the number of samples N is large enough, we can obtain estimates
with arbitrary precision. Thus, in contrast to the beamforming techniques, the MUSIC algorithm
provides statistically consistent estimates.

An important limitation is still the failure to resolve closely spaced signals in small samples
and at low SNR scenarios. This loss of resolution is more pronounced for highly correlated
signals. In the limiting case of coherent signals, the property (3.23) is violated because the rank
of Rx becomes smaller than the number of sources (the dimension of Un is too large), and the
method fails to yield consistent estimates. To remedy this problem, techniques such as “spatial
smoothing” as well as extensions of the MUSIC algorithm have been derived.

3.7 APPLICATIONS TO TEMPORAL MATCHED FILTERING

In the previous sections, we have looked at matched filtering in the context of array signal
processing. Let us now look at how this applies to temporal filtering.
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x1 x2

gs1 gs2

Figure 3.7. No intersymbol interference

No intersymbol interference We start with a fairly simple case, namely the reception of a
symbol sequence sδ(t) convolved with a pulse shape function g(t):

x(t) = g(t) ∗ sδ(t)

The symbol sequence is modeled as a sequence of delta pulses, sδ(t) =
∑

skδ(t − k). Note that
the symbol period is normalized to 1. We will first assume that the pulse shape function has a
duration of less than 1, so that g(t) has support only on the interval [0, 1). We sample x(t) at a
rate P , where P is the (integer) oversampling rate. The samples of x(t) are stacked in vectors

xk =




x(k)
x(k + 1

P )
...

x(k + P−1
P )




See also figure 3.7. If we are sufficiently synchronized, we obtain

xk = gsk ⇔




x(k)
x(k + 1

P )
...

x(k + P−1
P )




=




g(0)
g( 1

P )
...

g(P−1
P )




sk (3.25)

or
X = gs , X = [x0 x1 · · · xN−1] , s = [s0 s1 · · · sN−1] .

The matched filter in this context is simply gH. It has a standard interpretation as a convolution
or integrate-and-dump filter. Indeed, yk = gHxk =

∑P−1
i=0 g(i)x(k + i

P ). This can be viewed as a
convolution by the reverse filter gr(t) := g(1 − t):

yk = g
H
xk =

P∑

i=1

gr(
i
P )x(k + 1 − i

P )

If P is very large, the summation becomes an integral

yk =

∫ 1

0
g(t)x(k + t) dt =

∫ 1

0
gr(t)x(k + 1 − t) dt .
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x1 x2

g1s1 g2s1

Figure 3.8. With intersymbol interference

With intersymbol interference In practise, pulse shape functions are often a bit larger than
1 symbol period. Also, we might not be able to achieve perfect synchronization. Thus let us
define a shift of g over some delay τ and assume for simplicity that the result has support on
[0, 2T ) (although with pulse shapes longer than a symbol period, it would in fact be more correct
to have a support of [0, 3T )):

g(τ) :=




g(0 − τ)
g( 1

P − τ)
...

g(2 − 1
P − τ)


 .

Now, g(τ) is spread over two symbol periods, and we can define

g(τ) =

[
g1

g2

]
.

After convolution of g(t − τ) by the symbol sequence sδ(t), sampling at rate P , and stacking,
we obtain that the resuling sample vectors xk are the sum of two symbol sequences (see figure
3.8):

xk = g1sk + g2sk−1 ⇔




x(k)
x(k + 1

P )
...

x(k + P−1
P )


 =




g(0 − τ)
g( 1

P − τ)
...

g(1 − 1
P − τ)


 sk +




g(1 − τ)
g( 1

P − τ)
...

g(2 − 1
P − τ)


 sk−1

or in matrix form

X = GτS ⇔ [x0 x1 · · · xN−1] = [g1 g2]

[
s0 s1 · · · sN−1

s−1 s0 · · · sN−2

]
.

In this case, there is intersymbol interference: a sample vector xk contains the contributions of
more than a single symbol.

A matched filter in this context would be GH

τ , at least if Gτ is tall: P ≥ 2. In the current
situation (impulse response length including fractional delay shorter than 2 symbols) this is the
case as soon as we do any amount of oversampling. After matched filtering, the output yk has
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two entries, each containing a mixture of the symbol sequence and one shift of this sequence.
The mixture is given by

G
H

τ Gτ =

[
gH

1 g1 gH

1 g2

gH

2 g1 gH

2 g2

]

Thus, if g1 is not orthogonal to g2, the two sequences will be mixed and further equalization
(‘beamformer’ on yk) will be necessary. The matched filter in this case only serves to make the
output more compact (2 entries) in case P is large.

More in general, we can stack the sample vectors to obtain

X = GτS ⇔
[

x0 x1 · · · xN−1

x1 x2 · · · xN

]
=

[
0 g1 g2

g1 g2 0

] 


s1 s2 · · · sN

s0 s1 · · · sN−1

s−1 s0 · · · sN−2




Gτ is tall if 2P ≥ 3. It is clear that for any amount of oversampling (P > 1) this is satisfied.

We can imagine several forms of filtering based on this model.

1. Matched filtering by Gτ . The result after matched filtering is yk = GH

τ [ xk
xk+1

], a vector with

3 entries, and containing the contributions of 3 symbols, mixed via GH

τ Gτ (a 3× 3 matrix).

2. Matched filtering by g(τ). This is a more common operation, and equal to performing
integrate-and-dump filtering after a synchronization delay by τ . The data model is re-
garded as a signal of interest (the center row of S, premultiplied by g(τ): the center
column of Gτ ),

X =

[
g1

g2

]
[s0 s1 · · · sN−1] +

[
0 g2

g1 0

] [
s1 s2 · · · sN

s−1 s0 · · · sN−2

]

The second term is regarded as part of the noise. As such, it has a covariance matrix

RN =

[
g2g

H

2 0
0 g1g

H

1

]

The result after matched filtering is a 1-dimensional sequence {yk},

yk = g(τ)
H

[
xk

xk+1

]
= [g(τ)

H
g(τ)]sk + g(τ)

H

[
nk

nk+1

]

where the noise at the output due to ISI has variance

g(τ)
H
RNg(τ) = [g

H

1 g
H

2 ]

[
g2g

H

2 0
0 g1g

H

1

] [
g1

g2

]
= 2|gH

1 g2|2

If g1 is not orthogonal to g2, then the noise due to ISI is not zero. Since these vectors are
dependent on τ , this will generally be the case. With temporally white noise added to the
samples, there will also be a contribution σ2(gH

1 g1 + gH

2 g2) to the output noise variance.4

4In actuality, the noise will not be white but shaped by the receiver filter.
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3. Zero-forcing filtering and selection of one output. This solution can be regarded as the
matched filter of item 1, followed by a de-mixing step (multiplication by (GH

τ Gτ )
−1), and

selection of one of the outputs. The resulting filter is

w = Gτ (GH

τ Gτ )
−1



0
1
0


 = (GτGH

τ )†g(τ)

and the output will be [s0 s1 · · · sN−1]. Note that in principle we could select also one
of the other outputs, this would give only a shift in the output sequence ( [s1 s2 · · · sN ]
or [s−1 s0 · · · sN−2]). With noise, however, reconstructing the center sequence is likely
to give the best performance since it carries the most energy.

4. Wiener filtering. This is

w = R̂−1
X R̂XS



0
1
0


 .

Under noise-free conditions, this is asympotically equal to w = (GτGH

τ )†g(τ), i.e., the zero-
forcing filter. In the presence of noise, however, it is more simply implemented by direct
inversion of the data covariance matrix. Among the linear filtering schemes considered
here, the Wiener filter is probably the preferred filter since it maximizes the output SINR.

As we have seen before, the Wiener filter is asymptotically also equal to a scaling of
R−1

N g(τ), i.e., the result of item 2, taking the correlated ISI-noise into account. (This
equivalence can however only be shown if there is some amount of additive noise as well,
or else RN and RX are not invertible.)

Delay estimation In general, the delay τ by which the data is received is unknown and has
to be estimated from the data as well. This is a question very related to that of the DOA
estimation considered in the previous section. Indeed, in an ISI-free model xk = g(τ)sk, the
problem is similar to xk = a(θ)sk, but for a different functional. The traditional technique in
communications is to use the “classical beamformer”: scan the matched filter over a range of τ ,
and take that τ that gives the peak response. As we have seen in the previous sections, this is
optimal if there is only a single component in noise, i.e., no ISI. With ISI, the technique relies
on a sufficient orthogonality of the columns of Gτ . This is however not guaranteed, and the
resolution may be poor.

We may however also use the MUSIC algorithm. This is implemented here as follows: compute
the SVD of X , or the eigenvalue decomposition of RX . In either case, we obtain a basis Us for
the column span of X . In noise-free conditions or asymptotically for a large number of samples,
we know that the rank of X is 3, so that Us has 3 columns, and that

span{Us} = span{Gτ} = span{
[

0 g1 g2

g1 g2 0

]
}
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Figure 3.9. Delay estimation: spectra corresponding to the matched filter and MUSIC. The

true delay is 0.2T .

Thus, g(τ) is in the span of Us. Therefore,

g(τ) ⊥ Un = (Us)
⊥

Thus, if we look at the MUSIC cost function (viz. (3.24))

JMUSIC(τ) =
g(τ)HÛnÛ

H

ng(τ)

g(τ)Hg(τ)

it will be exactly zero when τ matches the true delay. Figure 3.9 shows the inverse of JMUSIC(τ),
compared to scanning the matched filter. It is obvious that the MUSIC provides a much higher
resolution.
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ADAPTIVE FILTERING

Contents

4.1 Wiener filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 Steepest gradient descent algorithm . . . . . . . . . . . . . . . . . . . 86

4.3 The LMS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Analysis of the LMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 Normalized LMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 The RLS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

In chapter 3, we considered various beamforming and receiver strategies for the case where (part
of) the transmitted signal is known. The objective was either to construct a receiver to recover
the same signal from the observed data, or to estimate the channel (array response matrix),
which is called model matching. In chapter 3, a data block was assumed to be available and
we could use all of the samples to construct the solutions. In many cases, however, data is
coming in sample by sample and the objective is to update the estimates as more data becomes
known. Such algorithms are called adaptive. Adaptive algorithms are based on feedback: the
error using the current beamforming weights or model is estimated, and then the weights are
modified such that the error becomes smaller. In this chapter, we study the most well-known
adaptive algorithms: the LMS and the RLS.

General references for this chapter are (Haykin 1992 [1], Widrow and Stearns 1985 [2]). A
historical perspective and examples can be found in [3]. A more recent overview of adaptive
filtering algorithms and acoustic echo cancellation can be found in [4].
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Figure 4.1. Adaptive output error minimization

4.1 WIENER FILTERING

Let us first briefly summarize some results from chapter 3. The scenario that we consider is
depicted in figure 4.1. We consider a single source-of-interest in noise,

xk = ask + nk , k = 1, 2, · · · .

The noise may contain also the effect of interfering sources. We assume that the source of
interest has unit power,

E(|sk|2) = 1 ,

and absorbe the scaling in a. We define We further define the received data covariance matrix as
Rx = E(xkx

H

k ) and the correlation between the received data and the symbols as rxs = E(xks̄k).

In the present scenario, we consider a beamformer at the output that is to produce a replica of
the signal. The objective of the beamformer is to minimize the output error. The corresponding
cost function is

J(w) = E(|wH
xk − sk|2) .

It can be worked out as

J(w) = E[(wHxk − sk)(x
H

kw − s̄k)]
= wHRxw − wHrxs − rH

xsw + 1 .

The gradient of J(w) is (recall (3.13))

∇J(w) = Rxw − rxs .

Let us denote the optimum that minimizes J(w) by w0. At the optimum, ∇J(w0) = 0, so that

Rxw0 = rxs ⇒ w0 = R−1
x rxs .
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The first expression is called the normal equations, and it leads to the second expression for the
Wiener filter. Note that

∇J(w) = 0 ⇒ E(xkx
H

kw − xks̄k) = 0 ⇒ E(xkēk) = 0

where

yk = w
H
xk , ek = yk − sk .

Thus, at the optimum, the output error ek is uncorrelated to the input vector. Indeed, any
correlated part can be used to reduce the error. This is called the orthogonality principle.

At the optimum, the remaining cost is

J(w0) = 1 − r
H

xsR
−1
x rxs =: J0,

and it is straightforward to verify that for any other w,

J(w) = J0 + (w − w0)
H
Rx(w − w0) .

This shows that J(w) is a quadratic function (in the entries of w) and that w0 is really the
minimizer.

With finite data, all expectations are estimated from the available data:

R̂x = 1
N

N∑

k=1

xkx
H

k = 1
N XXH

r̂xs = 1
N

N∑

k=1

xks̄k = 1
N XsH .

If we define also the finite-sample cost function as

Ĵ(w) = 1
N

N∑

k=1

|ek|2

= 1
N

N∑

k=1

|wH
xk − sk|2

= 1
N ‖wHX − s‖2

= 1
N

[
wHXXHw − wHXsH − sXHw + sHs

]

= wHR̂xw − wHr̂xs − r̂H

xsw + const.

then it is clear that the optimal finite-sample solution is ŵ0 = R̂−1
x r̂xs, and that at the optimum

1
N

∑
xkēk = 0 ⇔ Xe

H
= 0 , e := [e1 e2 · · · eN ] .

Thus, the orthogonality principle also holds for finite samples.
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4.2 STEEPEST GRADIENT DESCENT ALGORITHM

The optimal Wiener solution asks for the inversion of Rx. In some cases, Rx is large and
its inversion would be time-consuming. A common technique in optimization, used to find the
minimum of all kinds of cost functions, is to resort to iterative techniques. A popular and robust
technique (though not particularly fast) is based on the steepest descent algorithm. Given a
function f(x) of which we want to find the minimum, and an initial point x(1) with value
f (1) := f(x(1)) and gradient ∇f (1) = ∇f(x(1)). For another point x(2) close to x(1), we can then
write

∇f (1) ≈ f (2) − f (1)

x(2) − x(1)

or f (2) ≈ f (1) + (x(2) − x(1))∇f (1). If we now choose

x(2) = x(1) − µ∇f (1)

where µ is a small number (called the step size), then f (2) ≈ f (1) − µ(∇f (1))2, which is making
f (1) smaller. At the minimum, ∇f (1) = 0 and x(2) = x(1). Thus, this algorithm can be viewed as
making small steps in the direction of the negative gradient, for which the value of the function
will get smaller.

In our application, we have a cost function J(w), with complex gradient ∇J(w) = Rxw − rxs.
The Steepest Gradient Descent algorithm becomes

w(k+1) = w(k) − µ(Rxw
(k) − rxs) .

Since our cost function is a nice quadratic function in the entries of w, with only a single
minimum, we can arbitrarily select an initial point for the algorithm, typically w(0) = 0.

Figure 4.2(a) shows the cost function J(w) for two dimensions, w = [w1, w2]
T. The horizontal

axes are w1 and w2, the vertical axis is the corresponding J(w). Since it is quadratic in the
entries of w, the cost function is a paraboloid. The contours are ellipses for which the cost
is constant at a certain level. The curved lines show the convergence of the steepest gradient
algorithm from certain starting points, and two different values of µ. For small µ, the algorithm
follows precisely the direction of the negative gradient, and we obtain a curve that is orthogonal
to all the contour lines. For larger µ, the algorithm tends to overshoot.1

Figure 4.2(b) shows the convergence as a function of time, and for various values of µ. The
graphs are known as the learning curves. In this example, we took d = 2 sources coming from
directions [−10◦, 20◦] and with amplitudes [1, 0.8], M = 2 antennas spaced at half-wavelength,
and an SNR = 10 dB. Notice that if µ is larger, then the algorithm converges faster. However,
there is a critical point beyond which µ is too large: the algorithm becomes unstable. Hence,
there is a trade-off between stability and convergence rate.

1In this example, we took real-valued data to be able to show the cost function in two dimensions.
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Figure 4.2. Convergence of the Steepest Gradient Descent Algorithm
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4.2.1 Stability

We now analyze the stability properties of the algorithm. Let w0 denote the optimum, and
define

c(k) = w(k) − w0 .

Thus, c(k) is the error in the weight vector at the k-th iteration. To analyze the stability of the
algorithm, we derive the following recursion for c(k):

w(k+1) = w(k) − µ(Rxw
(k) − rxs)

w0 = w0 − µ(Rxw0 − rxs)

c(k+1) = c(k) − µRxc
(k) .

Hence
c(k+1) = (I − µRx)c(k) = · · · = (I − µRx)k+1c(0) . (4.1)

We thus see that the stability of the recursion depends on whether (I−µRx)k converges to zero.
This in turn depends on the eigenvalues of (I − µRx): introduce the eigenvalue decomposition

I − µRx =: UΛµU
H

then it follows that
(I − µRx)k = U(Λµ)kU

H

since U is unitary. If we now introduce a change of variables, v(k) := UHc(k) then

v(k) = (Λµ)kv(0) .

Note that ‖v(k)‖ = ‖c(k)‖, so that the change of variables does not change the norm. From
this it is clear that ‖c(k)‖ → 0 if and only if all eigenvalues λµ,i satisfy |λµ,i| < 1. Under this
condition the recursion is stable.

Let us now compute these eigenvalues. Introduce the eigenvalue decomposition of Rx:

Rx = UΛU
H

then
I − µRx = UU

H − µUΛU
H

= U(I − µΛ)U
H

.

We thus see that Λµ = I − µΛ. It follows that the recursion is stable if and only if

|1 − µλi| < 1 , i = 1, · · · , M
⇔ 0 < µλi < 2 .

The largest value that µ may take is constrained by λmax, hence we finally obtain the result that
the steepest gradient descent algorithm is stable if

0 < µ <
2

λmax
(4.2)

In the example in figure 4.2(b), the largest eigenvalue was λmax = 2.9, so that µmax = 0.69.
Indeed, for µ = 0.7, the algorithm is seen to be instable. Note that
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• The stability is independent of the initialization of the recursion.

• The maximal value of µ is data dependent. This is a large disadvantage in practical
implementations.

4.2.2 Convergence rate

Let us now consider the convergence speed. From

v(k) = (Λµ)kv(0) = (I − µΛ)kv(0) ,

it is seen that each entry of v(k) converges with a rate determined by |1 − µλi|. The entry that
converges the slowest is determined by that |1 − µλi| that is closest to 1.

If µ satisfies 1− µλmax > 0, i.e., µ < 1/λmax, then the slowest mode is determined by λmin. We
can define a corresponding time constant τ for which ‖v(τ)‖ = ‖v(0)‖/e, i.e.,

(1 − µλmin)
τ =

1

e
.

For sufficiently small µ, it follows that

τ =
−1

ln(1 − µλmin)
≈ 1

µλmin
.

Thus, the convergence rate is inversely proportional to µ and the smallest eigenvalue of Rx. If
we select µ large, e.g., µ = 1

λmax
, then

τ ≈ λmax

λmin
=: cond(Rx) . (4.3)

Thus, we see that the maximal convergence speed that can be achieved is limited by the condi-
tioning of the matrix Rx. If the eigenvalues of Rx are widely spread, e.g., because the signals
come from close directions or because one signal is much weaker than the others, then the
convergence will be slow.

4.3 THE LMS ALGORITHM

As we have seen, the steepest gradient descent algorithm is based on taking small steps into the
opposite direction of the complex gradient of the cost function,

∇J(w) = Rxw − rxs .

Until now, we had assumed that the matrix Rx and vector rxs are perfectly known,

Rx = E(xkx
H

k )
rxs = E(xks̄k)
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where sk is the desired response. In practical situations, these quantities have to be estimated
from the data. The Least-Mean-Square algorithm (LMS; Widrow 1975) is obtained by making
the following extremely simple estimates,

R̂x = xkx
H

k

r̂xs = xks̄k

The estimates are based just on the current samples, and not averaged at all over several
samples.2 The resulting instantaneous gradient estimate is

∇̂J(w) = xkx
H

kw − xks̄k

= xk(x
H

kw − s̄k)
= xkēk , ek = wHxk − sk = yk − sk .

Note that yk is the output of the beamformer for the present value of w, and ek is the output
error. The LMS algorithm thus becomes

yk := ŵ(k)Hxk

ek := yk − sk

ŵ(k+1) := ŵ(k) − µxkēk

It is usually initialized by setting ŵ(0) = 0. The large advantage of the LMS algorithm is its
small complexity: only 2M + 1 complex multiplications per update step.

Figure 4.3 shows an example of the convergence of the LMS algorithm.3 It is seen that for
small values of µ, the algorithm stays close to the Steepest Gradient Descent algorithm, but for
larger values of µ, the convergence becomes erratic. This is because the algorithm acts on noisy
instantaneous values of the data which are insufficiently damped by a large step size µ.

4.4 ANALYSIS OF THE LMS

4.4.1 Convergence in the mean

Consider the error in the weight vector computed by LMS, when compared to the optimal
(Wiener) weight, w0 = R−1

x rxs,

εk = w(k) − w0

If k → ∞, does the weight error go to zero? This cannot be answered directly like this, because
the algorithm acts on instantaneous (noisy) data and hence never converges. However, we can

2The averaging is obtained implicitly by choosing a sufficiently small step size.
3The data used in part (a) and (b) of the figure is not the same; part (a) is based on real data, whereas the

conditions for part (b) are the same as in figure 4.2(b).
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Figure 4.3. Convergence of the LMS
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consider the convergence of E(w(k)), the ensemble-averaged weight vector (obtained by averaging
w(k) over many independent realizations of x). For this we can say that

ŵ(k+1) = ŵ(k) − µ[xkx
H

kw
(k) − xks̄k]

w0 = w0 − µ[E(xkx
H

k )w0 − E(xks̄k)]

εk+1 = εk − µ[xkx
H

kw
(k) − E(xkx

H

k )w0 − (xks̄k − E(xks̄k))]

Since xk is independent of w(k), it follows that E(xkx
H

kw
(k)) = E(xkx

H

k )E(w(k)), so that

E(εk+1) = E(εk) − µ(E[xkx
H

k ]E(εk) − 0)
= E(εk) − µRxE(εk)
= (I − µRx)E(εk)

Hence E(εk) satisfies exactly the same recursion as the weight error c(k) of the Steepest Gradient
Descent algorithm (4.1). It follows that the (ensemble-)average behavior of the weight vector
convergence of LMS is the same as that of the SGD. Also the conditions for convergence are the
same as (4.2):

0 < µ <
2

λmax
.

Under this condition, LMS is said to be convergent in the mean.

4.4.2 Convergence in mean-square

Similar as for ŵ(k), the cost function Ĵk = ekēk also is a stochastic quantity. Let us therefore
consider the (ensemble-)average value of it,

Jk := E(ekēk)

= E([w(k)Hxk − sk]
H[w(k)Hxk − sk]) (w(k) = w0 + εk)

= E([wH

0 xk − sk]
H[wH

0 xk − sk] + ε
H

kxkx
H

kεk + ε
H

kxk(w
H

0 xk − sk) + (wH

0 xk − sk)
HxH

kεk)
= Jmin + E(εH

kxkx
H

kεk)

where Jmin is the output error of the Wiener receiver. The second term can be regarded as the
excess mean-squared error. This error due to misadjustment is the price paid for adaptivity. It
can be further written as

Jex(k) = E(εH

kxkx
H

kεk)
= E(tr[εH

kxkx
H

kεk])
= E(tr[xkx

H

kεkε
H

k ])
= tr(RxKk) , Kk := E(εkε

H

k )

where we have used the property of the trace operator: tr(AB) = tr(BA). Thus, the excess
mean-squared error is dependent on the data covariance matrix and the covariance of the weight
vector error. It is possible to derive a recursion for this error, see [1]. This then describes the
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transient behavior of the averaged algorithm as it converges to its final value, J∞ = Jmin +
Jex(∞).

Since the algorithm never converges but keeps responding to new data samples, the final weight
vector jitters around w0 with a variance K∞, and thus Jex(∞) is nonzero. It can be shown [1]
that, if µ satisfies

γ :=
M∑

i=1

µλi

2 − µλi
< 1

then the mean-squared error of the LMS algorithm converges and this asymptotic excess error
satisfies

Jex(∞) = Jmin
γ

1 − γ

Suppose that µλi � 1, i = 1, · · · , M , then this can be simplified to

Jex(∞) ≈ Jminγ ≈ Jmin
1
2µ

M∑

i=1

λi

Moreover,
M∑

i=1

λi has an interpretation as the average input power,

M∑

i=1

λi = tr(Rx) = tr(E(xkx
H

k ))

= tr(E(xH

kxk)) = E(‖xk‖2)

In summary, if

0 < µ <
2

E(‖xk‖2)

then the LMS converges in the mean-square, and the cost function converges to

J(∞) ≈ Jmin[1 + 1
2µE(‖xk‖2)]

We make the following remarks:

1. The misadjustment, defined as Jex(∞)/Jmin, is in this approximation linearly dependent
on the step size µ. A smaller step size gives a smaller error.

2. On the other hand, the convergence speed is inversely proportional to the step size (as
in the steepest gradient descent algorithm, see (4.3)). Thus, there is a trade-off between
speed and accuracy. For small µ, the adaptation is slow, but the excess error (asymptotic
variance of ŵ) is smaller.

3. This trade-off (choice of µ) is data dependent. It depends on the input power (average
eigenvalue of the data covariance matrix) and the smallest eigenvalue of the data covariance
matrix. Hence, note that also the number of antennas (filter taps) plays a role.
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4.5 NORMALIZED LMS

As discussed above, the value of µ in the LMS algorithm depends on the scaling of the data.
Indeed,

ŵ(k+1) = ŵ(k) − µxkēk , ek = w(k)Hxk − sk ,

and if xk is scaled by some factor α (e.g., because of a different antenna gain or propagation
conditions), then ek also scales with α, and µ has to be scaled by α−2 to obtain the same weights.

To obtain a scaling-invariant algorithm, a modification of the LMS called the Normalized LMS
(NLMS) has been derived (Goodwin; 1984). It is defined by the following recursion:

ŵ(k+1) = ŵ(k) − µ̃

‖xk‖2
xkēk

We can make the following remarks:

1. In comparison to the original LMS, we see that we have set µk = µ̃/‖xk‖2. The scaling by
the instantaneous input power makes the modified step size µ̃ scale-independent. At the
same time, the step size can be regarded as time-varying.

2. The NLMS is convergent in the mean-square if and only if

0 < µ̃ < 2,

and the MSE is given by
J(∞) ≈ Jmin[1 + 1

2 µ̃].

3. To avoid division by zero, one often adds a small positive number to ‖xk‖2.

4. For stationary inputs, the convergence properties of LMS and NLMS are quite similar, if
µ and µ̃ are related as µk = µ̃/E(‖xk‖2). The advantage of NLMS is that the input power
doesn’t have to be known, and that it is allowed to vary in time (non-stationary inputs).
This is essential in wireless communications with fading channels.

The NLMS can be derived as follows. Consider the usual cost function

J(w) = E(‖wHxk − sk‖2)
= wHRxw − wHrxs − rH

xsw + 1

and the steepest gradient descent update rule

ŵ(k+1) = ŵ(k) − µk∇k , ∇k = Rxw
(k) − rxs

where ∇k is the gradient of J(w(k)) based on the current estimate w(k). Previously, we have
taken a fixed step size µk = µ, which gave the Steepest Gradient Descent algorithm. LMS
followed by inserting instantaneous estimates. The idea now is to consider a varying µk and
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to compute which value of the step size optimizes the cost at time k + 1. This line search
optimization problem leads to

dJk+1

dµk
= 0 .

The derivative is given by

dJk+1

dµk
=

d

dµk

[
(ŵ(k)−µk∇k)

H
Rx(ŵ(k)−µk∇k)

− (ŵ(k)−µk∇k)
Hrxs − rH

xs(ŵ
(k)−µk∇k) + 1

]

= −∇
H

kRx(ŵ(k)−µk∇k) − (ŵ(k)−µk∇k)
HRx∇k + ∇

H

krxs + rH

xs∇k

= 2µk(∇
H

kRx∇k) − 2∇H

k∇k .

Thus, the optimal value for µk is given by

µk,opt =
∇

H

k∇k

∇
H

kRx∇k

Inserting as in LMS instantaneous values for the gradient, ∇̂k = xkēk, and for Rx, i.e., R̂x =
xkx

H

k , we obtain

µk,opt =
ekx

H

kxkēk

ekx
H

kxkx
H

kxkēk
=

1

xH

kxk

In practice, we would not use this optimal value but a fraction of it,

µk = µ̃µk,opt = µ̃
1

xH

kxk

where usually 0 < µ̃ < 1. For 1 < µ̃ < 2, the algorithm is still stable, but we continuously
overshoot the optimal location, and the result is rather noisy. See figure 4.4.

4.6 THE RLS ALGORITHM

The LMS algorithm was inspired by a desire to iteratively compute an estimate of the Wiener
receiver, without explicitly inverting the data covariance matrix. In this section we look at
an alternative approach, where we keep track of the inverse as more and more data becomes
available. The algorithm is based on the following matrix equality, known as Woodbury’s identity
or the Matrix Inversion Lemma.

4.6.1 Matrix inversion lemma

Lemma 4.1. For matrices of compatible sizes, and assuming all inverses exist,

(A − B
H
C−1B )−1 = A−1 + A−1B

H
(C − BA−1B

H
)−1BA−1 .
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Proof We can factor the following block-partitioned matrix in two ways (UDL or LDU):
[

A BH

B C

]
=

[
I BHC−1

0 I

] [
A − BHC−1B

C

] [
I 0

C−1B I

]

=

[
I 0

BA−1 I

] [
A

C − BA−1BH

] [
I A−1BH

0 I

]
.

Thus, the inverse can be written as
[

A BH

B C

]−1

=

[
I 0

−C−1B I

] [
(A − BHC−1B )−1 0

0 C−1

] [
I −BHC−1

0 I

]

=

[
(A − BHC−1B )−1 ∗

∗ ∗

]

but also as
[

A BH

B C

]−1

=

[
I −A−1BH

0 I

] [
A−1

(C − BA−1BH)−1

] [
I 0

−BA−1 I

]

=

[
A−1 + A−1BH(C − BA−1BH)−1BA−1 ∗

∗ ∗

]
.

2
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4.6.2 Infinite-horizon RLS algorithm

Suppose at time k we have collected k data samples Xk = [x1, · · · ,xk]. Given the desired
response sk = [s1, · · · , sk], the best solution to the linear least squares problem

ŵk = arg min
w

‖w
H
Xk − sk ‖2

is
ŵk = X†

ks
H

k = (XkX
H

k )−1Xks
H

k

This is also the best estimate of the Wiener receiver ŵk = R̂−1
k r̂k where

R̂k =
1

k

k∑

i=1

xix
H

i , r̂k =
1

k

k∑

i=1

xis̄i

It is clear that we can drop the scaling 1
k in both R̂k and âk without changing the result r̂k.

Thus define

Φk := XkX
H

k =
k∑

i=1

xix
H

i , θk := Xks
H

k =
k∑

i=1

xis̄i .

Then ŵk = Φ
−1
k θk.

Now we consider the computation of ŵk+1. For this we require the inverse of Φk+1. However,
note that Φk+1 = Φk +xk+1x

H

k+1. We can thus obtain Φk+1 from Φk via a rank-1 update. Using

the matrix inversion lemma, we can compute an update rule for Φ
−1
k+1 as well. Indeed, if we

identify in lemma 4.1
A → Φk

B → xH

k+1

C → −1

then we find that
Φ
−1
k+1 = (Φk + xk+1x

H

k+1)
−1

= Φ
−1
k − Φ

−1
k xk+1x

H

k+1Φ
−1
k

1 + xH

k+1Φ
−1
k xk+1

If we define a matrix Pk = Φ
−1
k , then we can simply update this inverse factor. The result is

the Recursive Least Squares (RLS) algorithm, (with infinite horizon, as we discuss later):

Pk+1 := Pk − Pkxk+1x
H

k+1Pk

1 + xH

k+1Pkxk+1

θk+1 := θk + xk+1s̄k+1

ŵk+1 := Pk+1θk+1 .

The algorithm is usually initialized with P0 = δ−1I, where δ is a very small positive constant,
and with θ0 = 0. As usual, the filter output is given by

yk+1 := ŵ
H

k+1xk+1.
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The RLS algorithm provides at any time the best possible estimate of the Wiener receiver,
based on the available data up to that point. The number of operations needed to update
the weight vector is (if we compute Pkxk+1 once) about 2M2 + 3M multiplications. Compare
this to a direct inversion of Φk, which is an order M 3 operation. Thus, RLS is an order M
more efficient than a direct matrix inversion, but an order M slower than the LMS algorithm.
(There are several faster or numerically more attractive implementations of RLS, in particular
for equalization purposes [1].)

4.6.3 Finite horizon

The preceding RLS algorithm has infinite memory. Indeed, Φk contains all preceding samples
until time 0, equally weighted. For adaptive purposes in which the data is non-stationary, this is
not desirable, in this case we want an effective window of data. There are two popular techniques
for this:

1. Sliding window: we base Φk and θk on only the last n samples. This involves an update
rule

Φk+1 = Φk + xk+1x
H

k+1 − xk−nx
H

k−n,
θk+1 = θk + xk+1s̄k+1 − xk−ns̄H

k−n.

It is clear that the downdate term xk−nx
H

k−n can be treated just as the update term in
deriving the update rule for Pk+1. Since the complexity is doubled and we have to keep n
previous data samples in memory, this technique is not used very often.

2. Exponential window: here the downdate is performed by simply scaling down Φk and θk

by a factor λ close to but smaller than 1:

Φk+1 = λΦk + xk+1x
H

k+1,
θk+1 = λθk + xk+1s̄k+1.

It is as if we have scaled the data xk and sk progressively, as if we would have used

Xk+1 = [xk+1 λ1/2xk λxk−1 λ3/2xk−2 · · · ],

sk+1 = [sk+1 λ1/2sk λsk−1 λ3/2sk−2 · · · ].

Thus, data is never quite forgotten but becomes less and less important. Typical values
for λ are in the range 0.95 – 0.999.

If we work out the updating rules, we obtain the RLS algorithm with finite horizon:

Pk+1 := λ−1Pk − λ−2
Pkxk+1x

H

k+1Pk

1 + λ−1xH

k+1Pkxk+1

θk+1 := λθk + xk+1s̄k+1

ŵk+1 := Pk+1θk+1 .
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Figure 4.5. Convergence of RLS

4.6.4 Comparison of RLS to LMS

With exponential windowing, one often defines the effective window length as the value for n
such that

λn =
1

e
⇒ n =

−1

ln λ
≈ 1

1 − λ
.

Thus, 1 − λ plays an analogous role as µλmin in the LMS algorithm.

A comparison is shown in figure 4.5. It is based on the same data as earlier in figure 4.3(b). For
the case λ = 1, we find that the algorithm converges in 4 steps, and stays flat after that. For
λ = 0.7 (this is an impractically small value that gives a memory length of only 3.3 samples),
the algorithm converges just as fast but has a large excess error. The excess error is comparable
to the LMS algorithm with µ = (1 − λ)/E(‖x‖2) = 0.088.

Further comparisons give rise to the following conclusions [1]:

1. RLS converges faster. One shows that the algorithm converges in about 2M iterations. It
is relatively insensitive to the eigenvalue spread of Rx, and has a negligible misadjustment
(zero for a stationary environment without disturbances, when λ = 1).

2. As LMS, RLS converges in the mean: E(wk) = w0.

3. If λ = 1, then the RLS achieves asymptotically the Wiener solution, hence it has asymp-
totically zero excess mean-squared error.
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Figure 4.6. Adaptive model matching

4. LMS has a superior performance in tracking non-stationary environments, for the same
level of misadjustment.

4.7 EXAMPLES

4.7.1 Model matching

In the previous sections, we have looked at output error models: the objective was to construct a
beamformer that recovers the signal and minimizes the output error. It is however also possible
to use the same type of algorithms on model error problems, as sketched in figure 4.6. The
objective here is to estimate the channel rather than the receiver, and to adapt the estimate
until the model error is minimal. It is thus a form of channel identification.

In equations: we consider a single source in noise (plus interference),

xk = ask + nk .

The objective is to find an estimate â such that the model error

ek = xk − âsk

is minimized. Note that here the model error is a vector. The corresponding cost function is

J(â) = E(‖ek‖2) = E(‖xk − âsk‖2) .

This can be worked out as

J(â) = E([xk − âsk]
H[xk − âsk])

= Rx − âHrxs − rxsâ + âHrsâ, rs = E(|sk|2),
and the gradient is

∇J(â) = rsâ − rxs = rs(â − a) ,
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where the latter equality is due to E(xks̄k) = rsa.

The steepest gradient algorithm in this context becomes

â(k+1) = â(k) − µ∇J(â(k))

= â(k) − µrs(â
(k) − a)

= µrsa + (1 − µrs)â
(k) .

It is straightforward to check the convergence of this recursion. Indeed, we can compare to the
similar recursion that occurs in systems theory,

xk = b + axk−1

= b + ba + a2xk−2

= b + ba + · · · + bak−1 + akx0

= b
1 − ak

1 − a
+ akx0 .

In our case, we obtain similarly

â(k) = aµrs
1 − (1 − µrs)

k

1 − (1 − µrs)
+ (1 − µrs)

kâ(0)

= a[1 − (1 − µrs)
k] + (1 − µrs)

kâ(0) .

Thus, if |1 − µrs| < 1, i.e., 0 < µ < 2
rs

, then the algorithm converges to a, independent of the
initial condition.

The LMS algorithm is derived from the steepest gradient algorithm by replacing the estimates
by instantaneous values. This gives

â(k+1) = â(k) − µ(â(k)sks̄k − xks̄k)

= â(k) + µeks̄k .
(4.4)

The similarity to the LMS algorithm of the previous sections is obvious. We can conclude
immediately that the algorithm converges if 0 < µ < 2

rs
, and that E(â(k)) = a. It is also possible

to extend the algorithm for the case with multiple (known) signals, although the derivation
becomes more involved since the gradient has to be defined with respect to an unknown matrix
A.

Interference cancellation in radio astronomy A practical example of the previous scenario
is the situation in radio astronomy. In Westerbork (NL), 14 telescope dishes are pointing in
the sky towards astronomical sources of interest. However, local interfering signals from GSM
telephones, television, airplane communication satellites, etc, enter into the dishes via the side
lobes and completely mask the sky sources. A current proposal is to put up a reference antenna
with an omni-directional response, which would mainly capture the interfering signal and have
almost no gain towards the astronomical sources. By correlating the reference antenna signal
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Figure 4.8. Adaptive filter

with the telescope signals, we can obtain an estimate of the array response a of the interfering
signal at the main telescopes. The correlation can be done directly by acting on blocks of N
data samples (as shown in figure 4.7), or adaptively using the LMS algorithm in (4.4). After a
has been obtained, there are various techniques to cancel the interference, e.g., by subtracting
âŝ(t), or by projecting out this dimension via a projection Pâ = I − â(âHâ)−1âH acting on xk.

4.7.2 Adaptive equalization

Until now we have considered adaptive filtering in the spatial domain, i.e., adaptive beamforming.
However, the same theory applies to adaptive filtering in the time domain as well. In fact, the
theory of adaptive temporal filtering is more rich because the model has more structure, and
this can be exploited to derive more efficient algorithms.
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To illustrate this, consider the scenario depicted in figure 4.8. The source sk (a symbol sequence)
is transformed to the pulse sequence sδ(t) in the analog domain. This sequence is then convolved
with the channel h(t), which we assume to be an FIR channel with length at most L symbols.
Noise n(t) is added, and the result is sampled at a rate P times faster than the symbol rate. We
normalize the symbol period to T = 1. The data model is thus (cf. chapter 1, equation (1.15))

Xm =




x0 x1 . . . xN−1
x−1 x0 . . . xN−2...

...
. . .

...
x−m+1 x−m+2 . . . xN−m




=




H 0

H
. . .

0 H







s0 s1 . . . sN−1

s−1 s0 . . . sN−2
...

...
. . .

...
s−L−m+1 s−L−m+2 . . . sN−L−m




= HmSL+m−1

With noise, we obtain Xm = HmSL+m−1 + Nm. Note that the model Xm = HmSL+m−1 + Nm

is of the same form as X = AS + N. The difference is that each row of S is a shift of another:
they are not independent, and the model has more structure than before.

A linear equalizer can be written as a vector w which combines the rows of Xm to generate an
output y = wHXm. Note that we equalize among m symbol periods, with P samples per symbol
(polyphase combining).

A necessary condition for equalization (the output y is equal to a row of S) is that H is tall,
which gives conditions on m in terms of P and L:

mP ≥ L + m − 1 ⇒ m(P − 1) ≥ L − 1

which implies

P > 1 , m ≥ (L − 1)

P − 1

With P = 2, a customary value, we obtain m ≥ L−1. Ideally, without noise, we can reconstruct
any row of S: each row is a valid symbol sequence. There are L + m− 1 rows, hence L + m− 1
valid equalizers. Equivalently, we would like to find w such that

w
HH = [1, 0, 0, · · · , 0] or [0, 1, 0, · · · , 0] or [0, 0, 1, · · · , 0] or · · ·

Each equalizer wH is another row of the left inverse H† of H. These are the zero-forcing
equalizers.

The symbol sequences that we can recover are all shifts of each other. Thus, we have to specify
at which delay δ we would like the symbol sequence to match the original sequence. Usually, we
specify the ‘center tap’: δ = 1

2(L + m − 1). With P = 2 and m = L − 1, we obtain δ = L − 1.

Without noise, all equalizers are equivalent. With noise, however, it is not guaranteed that the
center tap delay will result in the best equalizer: this depends on the channel. Equalizers have
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ĥ(t)

h(t)

e(t)

−
x(t)

s(t)

near end talker
n(t)

zδ

zδ

far end talker

Figure 4.9. Echo cancellation

different norms ‖w‖, and we prefer the equalizer that gives the smallest noise amplification, thus
has the smallest norm. Without estimating all equalizers, there is no way to know which one is
best.

In the presence of noise, we would also prefer to compute the Wiener equalizers rather than
the zero-forcing equalizers, i.e., columns of R−1

X RXS . The i-th column of R−1
X RXS is a Wiener

equalizer reconstructing the signal at a delay i.

For an adaptive filter, we have to select a reference signal. This is equal to the original signal,
after introducing the preferred delay δ. At this point, we have a data model X = HS, with a
reference signal (one row of S), and we can apply the same LMS, NLMS and RLS algorithms
as in the previous sections.

In practical systems, the reference signal is available for only a limited period (the training
period). After this period, the equalizer is assumed to have converged. At this point, we can
use the output of the equalizer to estimate the original source symbols, by comparing it to the
closest matching symbol. This is a quantization operation. E.g., if the source alphabet is simply
{−1, +1}, BPSK, then we simply look at the sign of yk and decide if it is negative or positive.
The idea behind decision-directed adaptive equalization is that if the noise is small, the decisions
are likely to be correct, and in that case we can generate the noise-free reference signal from the
output of the equalizer, without needing the original source. Decision-directed equalizers are
quite successful and often applied in telephone modems.

Echo cancellation A related example in which model matching in the temporal domain plays
a role is that of echo cancellation. In this case, (figure 4.9), we have a telephone system with two
speakers, one on the near-end and one on the far-end. On both sides, the system is not perfect
in the sense that an incoming signal s(t) from the far-end is put on the loud-speaker, received
again by the microphone, put back into the channel towards the far-end talker and looped back
to the near-end again. (This problem occurs in particular in hands-free telephony. An important
part of the feedback loop in conventional telephony is formed by imperfect hybrids at either side
of the telephone lines.) The signal is perceived as an echo.

ET4 147 (2005): Signal Processing for Communications



Bibliography 105

To mitigate this feedback loop, an adaptive echo canceller is introduced. This system consists of
an adaptive channel estimator, of the same principle as in section 4.7.1, but now in the temporal
domain. The objective is to estimate h(t) and to subtract h(t) ∗ s(t), such as to minimize the
error signal e(t), which ideally only consists of the near-end signal n(t).
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Chapter 5

THE ESPRIT ALGORITHM
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In chapter 3, we have looked at the MVDR and MUSIC algorithms for direction finding. It
was seen that MUSIC provides high-resolution estimates for the directions-of-arrival (DOAs).
However, these algorithms need a search over the parameter α, and extensive calibration data
(i.e., the function a(α) for a finely sampled range of α). In this present chapter, we look at
the ESPRIT algorithm for direction estimation. This algorithm does not require a search or
calibration data, but assumes a special array configuration that allows to solve for the DOAs
algebraically, by solving an eigenvalue problem. The same algorithm applies to delay estimation
and to frequency estimation.

5.1 DIRECTION ESTIMATION USING THE ESPRIT ALGORITHM

As in previous chapters, we assume that all signals are narrowband with respect to the propaga-
tion delay across the array, so that this delay translates to a phase shift. We consider a simple
propagation scenario, in which there is no multipath and sources have only one ray towards the
receiving antenna array. Since no delays are involved, all measurements are simply instanta-
neous linear combinations of the source signals. Each source has only one ray, so that the data
model is

X = AS .

A = [a(α1), · · · ,a(αd)] contains the array response vectors. The rows of S contain the signals,
multiplied by the fading parameters (amplitude scalings and phase rotations).

Computationally attractive ways to compute {αi} and hence A are possible for certain regu-
lar antenna array configurations for which a(α) becomes a shift-invariant or similar recursive
structure. This is the basis for the ESPRIT algorithm (Roy, Kailath and Paulraj 1987 [1]).
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x1 y1

x2 y2

x3 y3

∆

∆

∆

s(t)

5.1.1 Array geometry

The constraint on the array geometry imposed by ESPRIT is that of sensor doublets: the array
consists of two subarrays, denoted by

x(t) =




x1(t)
...

xM (t)


 , y(t) =




y1(t)
...

yM (t)




where each sensor yi has an identical response as xi, and is spaced at a constant displacement
vector ∆ (wavelengths) from xi. It is important that the displacement vector is the same for all
sensor pairs (both in length and in direction). The antenna response ai(α) for the pair (xi, yi)
is arbitrary and may be different for other pairs.

For the pair (xi(t), yi(t)), we have the model

xi(t) =
d∑

k=1

ai(αk)sk(t)

yi(t) =
d∑

k=1

ai(αk)e
j2π∆ sin(αk)sk(t) =

d∑

k=1

ai(αk)θksk(t)

where θk = ej2π∆ sin(αk) is the phase rotation due to the propagation of the signal from the
x-antenna to the corresponding y-antenna.
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In terms of the vectors x and y, we have

x(t) =
d∑

k=1

a(αk)sk(t)

y(t) =
d∑

k=1

a(αk)θksk(t)

(5.1)

The ESPRIT algorithm does not assume any structure on a(α). It will instead use the phase
relation between x(t) and y(t).

If we collect N samples in matrices X and Y, we obtain the data model

X = AS
Y = AΘS

(5.2)

where

A = [a(α1) · · · a(αd)] , Θ =




θ1

. . .

θd


 , θi = ej2π∆ sin(αi)

One special case in which the shift-invariant structure occurs is that of a uniform linear array
(ULA) with M + 1 antennas. For such an array, with interelement spacing ∆ wavelengths, we
have seen that

a(θ) =




1
θ
...

θM




, θ = ej2π∆ sin(α) (5.3)

If we now split the array into two overlapping subarrays, the first (x) containing antennas 1 to
M , and the second (y) antennas 2 to M + 1, we obtain

ax =




1
θ
...

θM−1




, ay =




θ
θ2

...
θM




=




1
θ
...

θM−1




θ

which gives precisely the model (5.1), where a in (5.1) is one entry shorter than in (5.3).

5.1.2 Algorithm

Given the data X and Y, we first stack all data in a single matrix Z of size 2M ×N with model

Z =

[
X
Y

]
= AzS , Az =

[
A

AΘ

]
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(In the case of a ULA with M + 1 antennas, we stack the available antenna outputs vertically
but do not duplicate the antennas; Z will then have size M + 1 × N). Since Z has rank d, we
compute an (economy-size) SVD

Z = ÛzΣ̂zV̂
H

z , (5.4)

where Ûz : 2M × d has d columns which together span the column space of Z. The same space
is spanned by the columns of Az, so that there must exist a d×d invertible matrix T that maps
one basis into the other, i.e., such that

Ûz = AzT =

[
AT

AΘT

]
(5.5)

If we now split Ûz into two M × d matrices in the same way as Z,

Ûz =

[
Ûx

Ûy

]

then we obtain that {
Ûx = AT

Ûy = AΘT

For M ≥ d, Ûx is “tall”, and if we assume that A has full column rank, then Ûx has a left-inverse

Û†
x := (Û

H

xÛx)−1Û
H

x

It is straightforward to verify that

Û†
x = (T

H
A

H
AT)−1T

H
A

H
= T−1A†

so that

Û†
xÛy = T−1

ΘT .

The matrix on the left hand side is known from the data. Since Θ is a diagonal matrix, the
matrix product on the right hand side is recognized as an eigenvalue equation: T−1 contains
the eigenvectors of Û†

xÛy (scaled arbitrarily to unit norm), and the entries of Θ on the diagonal
are the eigenvalues. Hence we can simply compute the eigenvalue decomposition of Û†

xÛy, take
the eigenvalues {θi} (they should be on the unit circle), and compute the DOAs αi from each
of them. This comprises the ESPRIT algorithm.

Note that the SVD of Z in (5.4) along with the definition of T in (5.5) as Ûz = AzT implies
that

Z = ÛzΣ̂zV̂
H

z , Z = AzS = AzTT−1S

⇒ T−1S = Σ̂zV̂
H

z = ÛH

z Z

⇒ S = TÛH

z Z
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Hence, after having obtained T from the eigenvectors, a zero-forcing beamformer on Z is given
by

W = ÛzT
H

Thus, source separation is straightforward in this case and essentially reduced to an SVD and
an eigenvalue problem.

If the two subarrays are spaced by at most half a wavelength, then the DOAs are directly
recovered from the diagonal entries of Θ, otherwise they are ambiguous (two different values of
α give the same θ). Such an ambiguity does not prevent the construction of the beamformer
W from T, and source separation is possible. Because the rows of T are determined only up to
a scaling, the correct scaling of the rows of S cannot be recovered unless we know the average
power of each signal or the array manifold A. This is of course inherent in the problem definition.

With noise, essentially the same algorithm is used. If we assume that the number of sources d
is known, then we compute the SVD of the noisy Z, and set ÛZ equal to the principal d left
singular vectors. This is the best estimate of the subspace spanned by the columns of A, and
asymptotically (infinite samples) identical to it. Thus, for infinitely many samples we obtain the
correct directions: the algorithm is asymptotically unbiased (consistent). For finite samples, an
estimated eigenvalue θ̂ will not be on the unit circle, but we can easily map it to the unit circle
by dividing by |θ̂|.

5.1.3 Extension for a ULA

There are many important refinements and extensions to this algorithm. If we have a uniform
linear array, we can use the fact that the solutions θ should be on the unit circle, i.e.,

θ̄ = θ−1

along with the structure of a(θ) in (5.3):

a(θ) =




1
θ
...

θM




⇒ Πā(θ) =:




1
1

. .
.

1







1
θ̄
...

θ̄M




=




θ̄M

θ̄M−1

...
1




=




1
θ
...

θM




θ−M = a(θ)θ−M

Thus, if we construct an extended data matrix

Ze = [Z , ΠX̄]

then this will double the number of observations but will not increase the rank, since

Ze = Az[S , Θ
−1S]

Using this structure, it is also possible to transform Ze to a real-valued matrix, by simple linear
operations on its rows and columns [2, 3]. As we saw in chapter 3, there are many other direction
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finding algorithms that are applicable. For the case of a ULA in fact a better algorithm is known
to be MODE [4]. Although ESPRIT is statistically suboptimal, its performance is usually
quite adequate. Its interest lies also in its straightforward generalization to more complicated
estimation problems in which shift-invariance structure is present.

5.1.4 Performance

Figure 5.1 shows the results of a simulation with 2 sources with directions −10◦, 10◦, a ULA(λ
2 )

with 6 antennas, and N = 40 samples. The first graph shows the mean value, the second the
standard deviation (averaged over the two sources), which indicates the accuracy of an individual
estimate. For sufficient SNR, the performance of both algorithms is approximately the same.

Figure 5.2 shows the same for varying separation of the two sources, with an SNR of 10 dB.
For small separation, the performance of ESPRIT drops because the matrix A drops in rank:
it appears to have only 1 independent column rather than 2. If we select two singular vectors,
then this subspace will not be shift-invariant, and the algorithm produces bad estimates: both
the mean value and the standard deviation explode. MUSIC, on the other hand, selects the null
space and scans for vectors orthogonal to it. If we ask for 2 vectors, it will in this case produce
two times the same vector since there is only a single maximum in the MUSIC spectrum. It
is seen that the estimates become biased towards a direction centered between the two sources
(= 0◦), but that the standard deviation gets smaller since the algorithm consistenly picks this
center.

The performance of both ESPRIT and MUSIC is noise limited: without noise, the correct DOAs
are obtained. With noise and asymptotically many samples, N → ∞, the correct DOAs are
obtained as well, since the subspace spanned by Ûz is asymptotically identical to that obtained
in the noise-free case, the span of the columns of A.

5.2 DELAY ESTIMATION USING ESPRIT

A channel matrix H can be estimated from training sequences, or sometimes “blindly” (without
training). Very often, we do not need to know the details of H if our only purpose is to recover
the signal matrix S. But there are several situations as well where it is interesting to pose a
multipath propagation model, and try to resolve the individual propagation paths. This would
give information on the available delay and angle spread, for the purpose of diversity. It is often
assumed that the directions and delays of the paths do not change quickly, only their powers
(fading parameters), so that it makes sense to estimate these parameters. If the channel is
well-characterized by this parametrized model, then fitting the channel estimate to this model
will lead to a more accurate receiver. Another application would be mobile localization for
emergency services.
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5.2.1 Principle

Let us consider first the simple case already introduced in section 3.7. Assume we have a vector
g0 corresponding to samples of an FIR pulse shape function g(t), nonzero only in a finite interval
[0, Lg), sampled at a rate P times the symbol rate:

g(t) ↔ g0 =




g(0)
g( 1

P )
...

g(L − 1
P )




Similarly, we can consider a delayed version of g(t):

g(t − τ) ↔ gτ =




g(0 − τ)
g( 1

P − τ)
...

g(L − 1
P − τ)




The length L is chosen such that at the maximal possible delay, g(t − τ) has support only on
the interval [0, L〉 symbols, i.e., L ≥ Lg + dmax(τ)e.
Given gτ and knowing g0, how do we estimate τ? Note here that τ does not have to be a
multiple of 1

P , so that gτ is not exactly a shift of the samples in g0. A simple ‘pattern matching’
with entry-wise shifts of g0 will thus not give an exact result.

We can however make use of the fact that a Fourier transformation maps a delay to a certain
phase progression. Let

g̃(ωi) =
∑

k

e−jωikg(
k

P
) , ωi = i

2π

LP
, i = 0, 1, · · · , LP − 1, k = 0, 1, · · · , LP − 1

In matrix-vector form, this can be written as

g̃0 = F g0 , g̃τ = F gτ

where F denotes the DFT matrix of size LP × LP , defined by

F :=




1 1 · · · 1
1 φ · · · φLP−1

...
...

...

1 φLP−1 · · · φ(LP−1)2




, φ = e−j 2π
LP . (5.6)

If τ is an integer multiple of 1
P , then it is straightforward to see that the Fourier transform g̃τ
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Figure 5.3. Definition of parameters: (a) time domain, (b) frequency domain.

of the sampled version of g(t − τ) is given by

g̃τ = g̃0 �




1
φτP

(φτP )2

...
(φτP )LP−1




= diag(g̃0) ·




1
φτP

(φτP )2

...
(φτP )LP−1




(5.7)

where � represents entrywise multiplication of the two vectors. The same holds true for any τ
if g(t) is bandlimited and sampled at or above the Nyquist rate.1

Thus, we will assume that g(t) is bandlimited and sampled at such a rate that (5.7) is valid even
if τ is not an integer multiple of 1

P . The next step is to do a deconvolution of g(t) by entrywise
dividing g̃τ by g̃0. Obviously, this can be done only on intervals where g̃0 is nonzero.

To be specific, assume that g(t) is bandlimited with normalized bandwidth Wmax (that is,
its Fourier transform is nonzero only for angular frequencies |ω| ≤ 1

2Wmax), and assume that
P > Wmax. Then g̃0 has at most LWmax nonzero entries, and we can limit our attention to
this interval. For a raised-cosine pulse shape with roll-off factor (excess bandwidth) ρ, we have
Wmax = 1+ ρ, see figure 5.3. Usually, however, we would select a somewhat smaller number, W
say, since the entries at the border can be relatively small as well, and their inversion can blow

1This is not in full agreement with the FIR assumption we made earlier. Because of the truncation to length

L, the spectrum of g(t) widens and sampling at a rate 1

P
introduces some aliasing due to spectral folding. This

will eventually lead to a small bias in the delay estimate.
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Figure 5.4. Multiray propagation channel

up the noise. Indeed, in the case of a raised-cosine pulse, we would set W = 1 and select only
the L center frequency samples.

Let Jg̃ : LW × LP be the corresponding selection matrix for g̃, such that Jg̃g̃ has the desired
entries. For later use, we require that the selected frequencies appear in increasing order, which
with the definition of the DFT in (5.6) usually means that the final dLW/2e samples of g̃0 should
be moved up front: Jg̃ has the form

Jg̃ =

[
0 0 IdLW/2e

IbLW/2c 0 0

]
: LW × LP .

If there are no other (intermittent) zero entries, we can factor diag(Jg̃g̃0) out of Jg̃g̃τ and obtain

z := {diag(Jg̃g̃)}−1Jg̃g̃τ , (LW × 1) (5.8)

which satisfies the model

z = f(φ) , f(φ) :=




1
φ
φ2

...
φLW−1




, φ := ej2πτ/L (5.9)

Note that f(φ) has the same structure as a(θ) for a ULA. Hence, we can apply the ESPRIT
algorithm in the same way as before to estimate φ from z, and subsequently τ . In the present
case, we simply split z into two subvectors x and y, one a shift of the other, and from the model
y = xφ we can obtain φ = x†y, τ = imag(log(φ)) · L

2π .
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5.2.2 Multipath channel model estimation

Single antenna case We will now build on the above principle. Consider a multipath channel
which consists of r delayed copies of g(t), as in figure 5.4, so that the impulse response is

h(t) =
r∑

i=1

βig(t − τi) ⇔ h =
r∑

i=1

gτiβi = [gτ1 , · · · ,gτr ]




β1
...

βr


 =: Gτβ

We assume that we know h (e.g., from a channel identification using a training sequence). Also
g(t) is known. The unknowns are the parameters {τi} and {βi}. Our objective is to estimate
these parameters.

As before, we can introduce the DFT transformation and the deconvolution by the known pulse
shape,

z := {diag(Jg̃g̃)}−1Jg̃Fh , (LW × 1)

The vector z has model

z = Fβ , F = [f(φ1) , · · · , f(φr)] , f(φ) :=




1
φ
φ2

...
φLW−1




Since there are now multiple components in F and only a single vector z, we cannot simply
estimate the parameters from this single vector by splitting it in x and y: this would allow only
to estimate a model with a single component. However, we can use the shift-invariance of the
vectors f(·) to construct a matrix out of z as

Z = [z(0) , z(1) , · · · , z(m−1)] , (LW − m + 1 × m) , z(i) :=




zi+1

zi+2
...

zLW−m+i




where z(i) is a subvector of z containing the i + 1-st till the LW − m + i-th entry. If we define
f(φ)(i) similarly, then

f(φ)(i) =




φi

φi+1

φi+2

...




=




1
φ
φ2

...




φi =: f ′(φ)φi

Thus, Z has the model
Z = F′B , F′ = [f ′(φ1) , · · · , f ′(φr)]
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B = [β Φβ Φ
2β · · · Φ

m−1β] , Φ =




φ1

. . .

φr




where F′ is a submatrix of F of size LW −m + 1× r, and B has size r ×m. Since each column
of F′ has the required shift-invariant structure, this is a model of the form that can be used by
ESPRIT: split Z into X and Y,

Z =

[
X

∗ ∗ ∗

]
=

[
∗ ∗ ∗
Y

]

where X contains all but the last rows of Z, and Y contains all but the first. Subsequently
compute the eigenvalue decomposition

X†Y = T−1
ΦT .

This determines Φ as the eigenvalues of X†Y, from which the delays {τi} can be estimated.

This algorithm produces high-resolution estimates of the delays, in case the parametrized model
holds with good accuracy for h. There is however one condition to check. ESPRIT requires that
the factorization Z = F′B is a low-rank factorization, i.e., if F′ is strictly tall (LW −m+1 > r)
and B is square or wide (r ≤ m). These conditions imply

r ≤ 1

2
LW

and if we assume W = 1 (not much excess bandwidth), then

r ≤ 1

2
L

Thus, there is a limit on the number of rays that can be estimated: not more than half the
length of the channel. If this condition cannot be satisfied, we need to use multiple antennas.

Multiple antennas Assume that we have an array with M antennas and have a multipath
propagation channel of the form

h(t) =
r∑

i=1

a(αi)βig(t − τi) (5.10)

In this case, h(t) is a vector with M entries. Assume that we have estimated the channel h(t)
and know the pulse shape function g(t). If we stack samples of h(t) into a vector as before, we
obtain

h =




h(0)
h( 1

P )
...

h(L − 1
P )




=
r∑

i=1

[gτi ⊗ a(αi)]βi =: [G(τ ) ◦ A(α)]β
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where ⊗ denotes the kronecker product and ◦ the Khatri-Rao product,

a ⊗ b :=




a1b
...

aNb


 , A ◦ B := [a1 ⊗ b1 · · · ar ⊗ br]

We can now continue and construct z from the DFT-transformation of h, and subsequently Z
from (block-)shifts of z as before,

Z = [z(0) , z(1) , · · · , z(m−1)] , (M(LW − m + 1) × m)

Z has a model
Z = [F′(φ) ◦ A(α)]B , F′ = [f ′(φ1) , · · · , f ′(φr)]

B = [β Φβ Φ
2β · · ·Φm−1β] , Φ =




φ1

. . .

φr




Since each column of F′ has the required shift-invariance structure, the ESPRIT algorithm can
be applied to Z, defining X and Y as submatrices of Z. The shift is now over a block of M
rows: X is all but the last M rows of Z, and Y is all but the first M rows of Z. This will then
produce estimates of {τi}.
The conditions for identifiability now become

{
r ≤ m
r ≤ M(LW − m)

⇒ r ≤ M

M + 1
LW

Thus, with many antennas we can estimate almost LW delays, two times more than before.
Note that there are no conditions on the antenna array: it can be an arbitrary collection of
antennas.

If the antenna array has the shift-invariance structure required by ESPRIT, for example it is
a ULA, then we can also estimate the angles in quite the same way, by applying the ESPRIT
algorithm to other submatrices of Z. We can even connect the angles and delays so obtained,
because the eigenvector matrix T is the same in both eigenvalue problems. We omit the details
here, see [5].

5.3 FREQUENCY ESTIMATION

The ESPRIT algorithm can also be used to estimate frequencies. Consider a signal x(t) which
is the sum of d harmonic components,

x(t) =
d∑

i=1

βie
jωit (5.11)
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Suppose that we uniformly sample this signal with period T (satisfying the Nyquist criterion,
here −π ≤ ωiT < π), and have available x(T ), x(2T ), · · · , x(NT ). We can then collect the
samples in a data matrix Z with m rows,

Z =




x1 x2 x3 · · ·
x2 x3 x4 · · ·
. .

.
. .

.
. .

.

xm xm+1 · · · xN


 , xk = x(kT ) .

From (5.11), we see that this matrix satisfies the model

Z = A(ω)S :=




1 · · · 1
φ1 · · · φd

φ2
1 · · · φ2

d
...

...

φm−1
1 · · · φm−1

d







β1φ1 β1φ
2
1 · · ·

...
...

βdφd βdφ
2
d · · ·




where φi = ejωiT . Since the model is the same as before, we can estimate the phase factors {φi}
as before using ESPRIT, and from these the frequencies {ωi} follow uniquely, since the Nyquist
condition was assumed to hold.

The parameter m has to be chosen larger than d. A larger m will give more accurate estimates,
however if N is fixed then the number of columns of Z (= N −m+1) will get smaller and there
is a tradeoff. For a single sinusoid in noise, one can show that the most accurate estimate is
obtained by making Z rectangular with 2 times more columns than rows, m = N

3 .

It is straightforward to extend the algorithm with multiple antennas, enabling joint angle-
frequency estimation [6].
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THE CONSTANT MODULUS ALGORITHM
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6.1 INTRODUCTION

In this chapter we introduce an elementary form of blind beamforming (see figure 6.1). In wireless
communications, this problem arises when a number of sources at distinct locations transmit
signals at the same frequency and in the same time slot. The signals are received by the base
station, which contains an array of antennas. By linearly combining the antenna outputs, the
objective is to separate the signals and remove the interference from the other signals. In chapter
3 we have considered this situation, but assumed that we had available a training sequence: a
segment of the signal of interest which is known. In this chapter, we consider a “blind” algorithm:
a blind beamformer is to compute the proper weight vectors wi from the measured data only,
without detailed knowledge of the signals and the channel. It can do so by comparing properties
of the signal at the output of the beamformer to properties that the desired source signal would
have at this point.

For example, if we know that the desired source has an amplitude |sk| constant to 1 for every
sample (such a signal is called constant modulus), then we can test this property for the output
signal yk of the beamformer, and define an error equal to the modulus difference |y|2 − 1. See
figure 6.1(a). Alternatively, we can estimate the best signal that has this property based on
the output of the beamformer, i.e., ŝk = yk

|yk| , and give an error equal to ŝk − yk. Here, ŝk is
regarded as a good estimate of the source signal, it is used as a reference signal instead of sk.
It is an elementary form of decision feedback. If the source belongs to a certain alphabet, e.g.,
sk ∈ {±1} for BPSK of sk ∈ {±1,±j} for QPSK, then we can make estimates of the symbols
by rounding yk to the closest constellation point, and use the resulting symbol sequence as a
reference signal. See figure 6.1(b).
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Figure 6.1. Blind beamforming scenarios: (a) based on modulus error, (b) based on estimated

output error.
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Figure 6.2. (a) single CM signal, (b) sum of two CM signals

Throughout this chapter we assume as before a stationary situation with essentially no delay
spread (as compared to the inverse of the signal bandwidths), so that no equalization is required.
Any angle spread is acceptable. The situation is described by the simple data model

x(k) = As(k) (6.1)

where the vector x(k) is a stacking of the m antenna outputs xi(k) at discrete time k, s(k) is
a stacking of the d source signals si(k), and A is the array response matrix which describes the
linear combinations of the signals as received by the antennas. The beamforming problem is to
find weight vectors wi, one for each source, such that wH

i x(k) = si(k) is equal to one of the
original sources, without interference from the others.

Although we will be concerned with blind beamforming, it is useful to note that a quite similar
problem arises in the context of blind equalization of a single source observed through an unknown
time-dispersive FIR channel. In that situation, the received signal x(k) is a linear combination of
shifts of the original source s(k). By feeding x(k) through a tapped delay line, we can construct a
vector of received signals and we will arrive at the same model as (6.1), be it with more structure
since si(k) = s(k− i) and xi(k) = x(k− i). Another aspect that distinguishes blind equalization
from blind beamforming is that in the latter we try to receive all independent sources.

In chapter 5, we have looked at beamforming algorithms that focussed on properties of A.
We assumed that the columns of A are vectors on the array manifold, each associated to a
certain direction-of-arrival (DOA). By finding these directions, we obtain an estimate of A, and
subsequently we can construct a beamformer W to separate the sources. This approach requires
a calibrated array, and a scenario with very limited multipath propagation (since all DOAs have
to be estimated).

In this chapter, we look at a second class of approaches, exploiting structural properties of the
source vector that should hold and be reconstructed by the beamformer. This is more promising
in the presence of unstructured multipath and useful in the context of blind equalization as well.
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6.2 THE CONSTANT MODULUS ALGORITHM

One widely used property, and the property considered here, is the constant modulus of many
communication signals (e.g. FM and PM in the analog domain, and FSK, PSK, 4-QAM for
digital signals). For such signals, the amplitude |s(k)| is a constant, typically normalized to
1, and all information is carried in the phase. If we have a single source s(k), and plot the
(complex) samples in the complex plane, then all samples will lie on the unit circle, see figure
6.2. On the other hand, if we have the sum of two sources, s1(k)+αs2(k), then the samples will
in general not lie on a circle, unless α = 0 (or if there are very special relations between the two
sources—this is not possible if the two sources are independent). If α 6= 0, then the received
samples will be on a donut-shaped annulus.

The idea of modulus restoral is to play with the weights of a beamformer w until the output
y(k) = ŝ(k) = wHx(k) has the same property, |ŝ(k)| = 1, for all k. If that is the case, the output
signal will be equal to one of the original sources [1].

6.2.1 CMA cost function

A popular implementation of such a property restoral algorithm is found by writing down a suit-
able cost function and minimizing it using stochastic gradient-descent techniques. For example,
for a sample vector xk we can consider as cost function the expected deviation of the squared
modulus of the output signal yk = wHxk to a constant, say 1:

J(w) = E(|yk|2 − 1)2 = E(|wH
xk|2 − 1)2 . (6.2)

This is simply a positive measure of the average amount that the beamformer output yk deviates
from the unit modulus condition. The objective in choosing w is to minimize J and hence to
make yk as close to a constant modulus signal as possible. Without additive noise, if we manage
to achieve J(w) = 0 then w reconstructs one of the sources.

In the derivation of the Wiener receiver, we could compute the minimizer w of the cost function
analytically. For the CM cost function (6.2) this is not possible because it is a fourth-order
function with a more complicated structure. However, there are many ways in which we can
iteratively search for the minimum of J . The simplest algorithm again follows from a stochastic
gradient-descent, similar to the derivation of the LMS algorithm. In this case, we update w
iteratively, with small steps into the direction of the negative gradient,

w(k+1) = w(k) − µ∇(Jk)

where µ is a small step size, and ∇(Jk) ≡ ∇w̄J(w(k)) is the gradient vector of J(w) with respect
to the entries of w̄ (treated independently from w), evaluated at the current value of w. Using
complex calculus and the fact that |yk|2 = ykȳk = wHxxHw, it can be verified that the gradient
is given by

∇wJ = E{(|yk|2 − 1) · ∇(wHxxHw)}
= 2E{(|yk|2 − 1) · xxHw}
= 2E{(|yk|2 − 1)ykx} .
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Thus, we can find a minimizer w iteratively via

w(k+1) = w(k) − µxk x
H

kw
(k) (|w(k)Hxk|2 − 1) (6.3)

(absorbing the factor 2 in µ). This iteration is called the Constant Modulus Algorithm (CMA,
Treichler Agee and Larimore 1983 [1, 2]) and was first introduced for the case of blind equaliza-
tion. It has its roots in the work of Sato [3] and Godard [4]. See [5, 6] for recent overviews and
a historical perspective.

In comparison to the LMS algorithm, we see that the role of the update error (in the LMS equal
to the output error εk = yk − sk) is here played by

εk = (|yk|2 − 1)yk

In the LMS, we need a reference signal sk to which we want to have the output converge. In
CMA, however, the reference signal is not necessary, we use the a priori information that |yk| = 1
in the absence of interfering signals.

6.2.2 Properties of the CMA

The CMA cost function as a function of y is shown in figure 6.3(a). For clarity, the plot is shown
for a real-valued y. Note that there are minima for |y| = 1 and a local maximum for y = 0.
In the complex case, the minima will be the unit circle. Thus, there is no unique minimum.
Indeed, if w is a beamformer such that yk = wHxk has the constant-modulus property, then
another beamformer is αw, for any scalar α with |α| = 1. This would scale the output by ᾱ,
but this represents only a constant phase shift. It is clear that without further information on
the source we cannot remove this ambiguity. Very often, the ambiguity is not important since
the information is coded in the phase changes (such as for frequency-modulated sources).

Figure 6.3(b) shows the cost function in the w-domain, again for a real-valued case. There are
two antennas; the horizontal axes are w1 and w2, respectively; the vertical axis is J([w1 w2]

T ).
There are four minima, corresponding to beamformers that reconstruct s1, −s1, s2 and −s2,
respectively. For complex signals, there would be two classes of beamformers, reconstructing
αs1 and αs2, for arbitrary α with |α| = 1. The graph also shows the convergence of the CMA
algorithm for two different initializations. Note that depending on the initial point, the algorithm
converges to different minima.

Figure 6.3(c) shows the corresponding costs as function of the number of updates. As with LMS,
a larger step size makes the convergence faster but also more noisy. The top graph shows the
convergence of the CMA cost as used by the algorithm, the bottom graph the convergence in
terms of the output error, J(w) = wHRw − aHw − wHa + 1. Here, a is the a-vector of the
source to which the algorithm converges. Note that the algorithm is not trying to minimize this
cost function.
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Figure 6.3. CMA cost function and convergence
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Remarks

• We need to select a suitable step size µ and an initial point w(0) for the iteration. Unlike
LMS, we cannot choose w(0) = 0 since this precisely selects the local maxima of the cost
function, but any other random vector will do.

The maximal step size has not been theoretically derived. Because the cost function
involves fourth order moments, the gradient is much steeper away from the optimum in
comparison to LMS, and the maximal µ that still guarantees stability is smaller.

• One can show that the minimizing points of the CMA cost function are usually quite
close (but not precisely identical) to the Wiener beamformers for each of the sources (up
to scaling by α, |α| = 1). Since it is a stochastic algorithm, the beamformer computed
at each step of the CM algorithm will never completely converge but jitter around the
minimizing solution with a variance depending on the step size.

• In chapter 5, we have found the factorization of X using properties of A, in particular its
Vandermonde structure. The CMA uses only the properties of S. This is potentially more
robust, since these properties can be controlled very well, whereas the propagation model
is determined by nature and may or may not be close to our presumed specular multipath
model. In addition, the estimation of DOAs requires the use of calibrated antenna arrays
(the function a(θ) must be known up to a scalar), or arrays with a specific structure (such
as a ULA). Finally, DOA estimation is hard if two rays of the same user have identical
delays, because in that case the a-vectors of the two rays add up and the rank of the
X-matrix does not increase.

• The constant modulus property holds for all phase-modulated and frequency modulated
signals, and for several types of signals in the digital domain (such as frequency-shift
keying (FSK), phase-shift keying (PSK), binary-shift keying (BPSK) and 4-QAM. For
digital signals, the fact that the source symbols are selected from a finite alphabet is an
even stronger property that can very well be exploited.

Even for sources that are not constant modulus, such as multi-level constellations (higher
order QAM), the CMA can be successfully applied.

Variants of CMA

There exists a very similar CMA update rule [7],

y := w(k)Hxk , ε =
y

|y| − y , w(k+1) := w(k) + µxk ε (6.4)

(the overbar denotes complex conjugation). In this case, the update error that controls the
iteration is ( y

|y| − y). Compared to the LMS, we see that y
|y| plays the role of desired signal, see
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also figure 6.1. Ideally, y is constant modulus and the error is zero. This update rule is derived
from a slightly different cost function, namely the “CMA(1,2)” cost function

J(w) = E(|yk| − 1)2 = E(|wH
xk| − 1)2 . (6.5)

An advantage is that the role of µ is more closely related to that of LMS, facilitating its analysis
close to convergence.

It also allows to pose a “Normalized CMA” similar to the Normalized LMS (section 4.5),

y := w(k)Hxk , ε =
y

|y| − y , w(k+1) := w(k) +
µ

‖xk‖2
xk ε (6.6)

where µ is made data scaling independent by dividing by the instantaneous input power. A
better but slightly more complicated ‘orthogonalization’ version of CMA was considered in [7]
and became known as orthogonal CMA (OCMA, see also [8]),

y := w(k)Hxk , ε =
y

|y| − y , w(k+1) := w(k) + µR−1
k xk ε (6.7)

where Rk is the data covariance matrix estimated from the available data, iteratively given by

Rk =
1

k
xkx

H

k +
k − 1

k
Rk−1

or possibly a sliding window or exponential window estimate as in the RLS.

Finally, we mention the Least Squares CMA (LSCMA) [9], see also [10]. It is a block updating
scheme acting iteratively on the complete data matrix X = [x1 , · · · , xN ], assuming N samples
are available. It is derived from optimizing the LS cost function minw ‖s−wHX‖, substituting
at time k the best blind estimate of the desired source vector s = [s1 , · · · , sN ] available at that
moment, i.e.,

ŝ := [
y1

|y1|
,

y2

|y2|
, · · · ,

yN

|yN | ]

where yi = w(k)Hxi is the output of the beamformer based on the estimate of w at iteration
step k. The solution of the LS problem minw ‖ŝ − wHX‖ is given by

w(k+1) := (ŝ X†)H

One can show that this iteration converges to a minimum of the CMA(1,2) cost function (6.5).
The advantage of this scheme is that the convergence is quickly and does not depend on a step
size µ. It also requires much less temporal samples (N) than the CMA, since the same block of
data is reused until convergence.
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CMA

ŝ1(k)

LMS

−

−

−
x1(k) = x(k) − â1ŝk(k)

w1

â1

x(k)

6.3 THE CM ARRAY

The CMA gives only a single beamformer vector. This is sufficient for blind equalization appli-
cations (X = HS), since the rows of S are merely shifts of each other, and we don’t have to find
all of them. In contrast, the beamforming problem asks for all possible weight vectors that give
back linearly independent CM signals, which is usually much harder.

If we initialize the CMA with a random vector w(0), then the CMA tends to converge to the
strongest signal. However, this cannot be guaranteed: for an initialization close enough to a
weak signal, the algorithm converges to that weaker signal.1 This gives one way to find all
signals: use various initializations and determine if independent signals have been found.

A more secure algorithm is the so-called multi-stage CMA, also called the CM Array [11–14].
The output of a first CMA stage results in the detection of the first CM signal, and gives an
estimate ŝ1(k), say. This signal can be used as a reference signal for the LMS algorithm in
section 4.7.1 to estimate the corresponding array response vector â1. The update rule is given
in equation (4.4):

â
(k+1)
1 = â

(k)
1 + µlms[x(k) − â

(k)
1 ŝ1(k)]¯̂s1(k) .

We can then subtract the estimated source signal from the original data sequence,

x1(k) = x(k) − â
(k)
1 ŝ1(k)

and feed the resulting filtered data to a second CMA stage in order to detect a possible second
CM signal. This can be repeated until all signals have been found. See figure 6.3.2

1During the early days of CMA, only the reception of the strongest signal was desired, and convergence to

another signal was regarded as mis-convergence.
2The algorithm used in the CM Array in [12–14] is in fact the alternative CMA in (6.4).
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A problem with this scheme is that the LMS algorithm can converge only after the first CMA
has sufficiently converged. In the mean time, the second CMA may have converged to the
same signal as the first CMA (especially if it is strong), and if the first LMS is not completely
removing this signal, the second stage will stay at this signal. Thus, it may happen that the
same signal is found twice, and/or that not all signals are found. A related problem is that the
CMA converges to a point close to the Wiener solution. Hence, the estimate ŝ1(k) will always
contain components of the other signals as well. An analysis of the situation is given in [12, 14].

A second problem is that the convergence speed may be slow (several hundreds of samples),
since we have a cascade of adaptive algorithms. It has been proposed to use direction-finding
algorithms such as MUSIC first to initialize the cascade. An alternative approach is to augment
the cost function with additional terms that express the independence of the output signals,
e.g., by putting a constraint on the cross-correlation of these signals [15, 16].

It has also been proposed to force the linear independence of the beamforming vectors (or even
their orthogonality after prewhitening). However, if the number of sensors is larger than the
number of sources, there exist vectors w0 in the left null space of A such that wH

0 A = 0. These
vectors can be added to any solution w without changing the output signal. It is thus possible
that independent beamforming vectors give rise to the same output signals, and hence it is not
sufficient to require the independence of the w.

In summary, iterative CMAs are straightforward to implement and computationally of modest
complexity. They can however converge slowly, with unpredictable convergence speed, and the
recovering of all independent sources remains a problem. It is thus interesting to note that the
problem admits an elegant and algebraic solution, the Algebraic CMA (ACMA) [17].
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GLOSSARY

Abbreviations

BPSK Binary Phase-Shift Keying
CDF cumulative distribution function
C/I Carrier to Interferer ratio
CM Constant modulus
CMA Constant modulus algorithm
DOA Direction Of Arrival
FA Finite alphabet
FIR Finite duration Impulse Response
GMSK Gaussian filtered Minimum-Shift Keying
GSM Global System for Mobile communication
IF Interferer
i.i.d. independent and identically distributed
ISI Inter Symbol Interference
LOS Line Of Sight
ML Maximum Likelihood
MIMO Multi-input multi-output
MLSE Maximum Likelihood Sequence Estimation
MSK Minimum-Shift Keying
PDF probability density function
PSK Phase-Shift Keying
SISO Single-input single-output
SNR Signal to Noise Ratio
SOI Signal Of Interest
ULA Uniform Linear Array
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Notation

real(z) The real part of z
imag(z) The imaginary part of z
z̄ The complex conjugate of z

I The identity matrix
AT The transpose of A
AH The complex conjugate transpose of A
|A| The determinant ofA
PA = A(AHA)−1AH The projection matrix onto the range of A
P⊥

A = I − PA The projection matrix onto the orthogonal complement of the range of A
vec(A) Stacking of the columns of A into a vector
A ⊗ B Kronecker product: matrix with block entries aijB
A � B Pointwise multiplication of matrices A and B

h ∗ s(t) convolution

Common meaning of symbols

d Number of sources (users)
L Channel length (integer, in symbol periods)
M Number of antennas
N Number of snapshots
P Oversampling rate
r Number of rays in multipath model

A Array response matrix
X Data matrix
S Signal matrix
H Channel matrix
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