Applied Convex Optimization

Circuit and Systems Group

Delft University of Technology

Tuesday $11^{\text {th }}$ December, 2018

Outline

(1) First Half

CVX: A Convex Optimisation Toolbox
Convex Sets
Convex Functions
(2) Second Half

Converting Convex Problems
Lagrange Duality

fuDelft

Next Subsection

(1) First Half

CVX: A Convex Optimisation Toolbox
Convex Sets
Convex Functions
(2) Second Half

Converting Convex Problems Lagrange Duality

What is CVX?

- CVX is a modeling system for convex optimisation problems
- Website: http://cvxr.com/cvx

Structure of Convex Problems

Mathematically ${ }^{1}$

$$
\begin{array}{ll}
\min _{\mathbf{x}} & f_{0}(\mathbf{x}) \\
\text { s.t. } & f_{i}(\mathbf{x}) \leq \mathbf{0}, \quad i=1, \cdots, m \\
& h_{j}(\mathbf{x})=0, \quad j=1, \cdots, p
\end{array}
$$

In CVX

$$
\begin{aligned}
& \text { cvx_begin } \\
& \text { variables } \mathrm{x}(\mathrm{n}) \\
& \text { minimize }(\mathrm{f} 0(\mathrm{x})) \\
& \text { subject to } \\
& \mathrm{f}(\mathrm{x})<=0 \\
& \mathrm{~A} * \mathrm{x}-\mathrm{b}==0 \\
& \text { cvx_end }
\end{aligned}
$$

${ }^{1} f_{0}$ and f_{i} must be convex and h_{i} must be affine.

Return Values

Upon exit, CVX sets the variables

- x - solution variables(s) x^{*}
- cvx_optval - the optimal value p^{*}
- cvx_status - solver status (Solved, Unbounded, Infeasible,...)

Basic Example - LP

Optimization Problem

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{A x}=\mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{array}
$$

In CVX

$$
\begin{aligned}
& \text { cvx_begin } \\
& \quad \text { variables } \mathrm{x}(\mathrm{n}) \\
& \text { minimize }\left(\mathrm{c}^{\prime} * \mathrm{x}\right) \\
& \text { subject to } \\
& \quad \mathrm{A} * \mathrm{x}-\mathrm{b}==0 \\
& \mathrm{x}>=0 \\
& \text { cvx_end }
\end{aligned}
$$

Basic Example - LP

Demo in Matlab

Practical Example

Beam Pattern Optimization

Given an arbitrary N element antenna array, design a configuration for the antennas such that

Practical Example

Beam Pattern Optimization

Given an arbitrary N element antenna array, design a configuration for the antennas such that

- The gain in a target direction is unity (target signal is preserved)

Practical Example

Beam Pattern Optimization

Given an arbitrary N element antenna array, design a configuration for the antennas such that

- The gain in a target direction is unity (target signal is preserved)
- The worst case side lobe gain of the setup is minimized

Practical Example

Beam Pattern Optimization

Given an arbitrary N element antenna array, design a configuration for the antennas such that

- The gain in a target direction is unity (target signal is preserved)
- The worst case side lobe gain of the setup is minimized

The task is to design a set of weights \mathbf{w} to meet these performance requirements.

Beam Pattern Optimization

Problem Setup

Beam Pattern Optimization

Problem Setup

- Discretise angles of arrival into M points i.e. $\theta=1,2, \cdots, 360$ and split into main lobe and side lobe regions.

Beam Pattern Optimization

Problem Setup

- Discretise angles of arrival into M points i.e. $\theta=1,2, \cdots, 360$ and split into main lobe and side lobe regions.
- Given a weight vector \mathbf{w}, the gain response of the array in direction i is given by $\left|\mathbf{a}_{i}^{H} \mathbf{w}\right|$ where \mathbf{a}_{i} captures the natural response of the antennas (i.e. delay and scaling).

Beam Pattern Optimization

Problem Setup

- Discretise angles of arrival into M points i.e. $\theta=1,2, \cdots, 360$ and split into main lobe and side lobe regions.
- Given a weight vector \mathbf{w}, the gain response of the array in direction i is given by $\left|\mathbf{a}_{i}^{H} \mathbf{w}\right|$ where \mathbf{a}_{i} captures the natural response of the antennas (i.e. delay and scaling).
- Stacking all angles in the side lobe region into a matrix $\mathbf{A}_{\text {sl }}$, the worst case side lobe gain is given by $\left\|\mathbf{A}_{\mathrm{sl}}^{H} \mathbf{w}\right\|_{\infty}$

Beam Pattern Optimization

Problem Setup

- Discretise angles of arrival into M points i.e. $\theta=1,2, \cdots, 360$ and split into main lobe and side lobe regions.
- Given a weight vector \mathbf{w}, the gain response of the array in direction i is given by $\left|\mathbf{a}_{i}^{H} \mathbf{w}\right|$ where \mathbf{a}_{i} captures the natural response of the antennas (i.e. delay and scaling).
- Stacking all angles in the side lobe region into a matrix $\mathbf{A}_{\text {sl }}$, the worst case side lobe gain is given by $\left\|\mathbf{A}_{\mathrm{sl}}^{H} \mathbf{w}\right\|_{\infty}$

Beam Pattern Optimization

Problem Setup

- Discretise angles of arrival into M points i.e. $\theta=1,2, \cdots, 360$ and split into main lobe and side lobe regions.
- Given a weight vector \mathbf{w}, the gain response of the array in direction i is given by $\left|\mathbf{a}_{i}^{H} \mathbf{w}\right|$ where \mathbf{a}_{i} captures the natural response of the antennas (i.e. delay and scaling).
- Stacking all angles in the side lobe region into a matrix $\mathbf{A}_{\text {sl }}$, the worst case side lobe gain is given by $\left\|\mathbf{A}_{\mathrm{sl}}^{H} \mathbf{w}\right\|_{\infty}$

$$
\begin{array}{ll}
\min _{\mathbf{w}} & \left\|\mathbf{A}_{\mathrm{sl}}^{H} \mathbf{w}\right\|_{\infty} \\
\text { s.t. } & \mathbf{a}_{\mathrm{tar}}^{H} \mathbf{w}=1
\end{array}
$$

Beam Pattern Optimization

Problem Setup

- Discretise angles of arrival into M points i.e. $\theta=1,2, \cdots, 360$ and split into main lobe and side lobe regions.
- Given a weight vector \mathbf{w}, the gain response of the array in direction i is given by $\left|\mathbf{a}_{i}^{H} \mathbf{w}\right|$ where \mathbf{a}_{i} captures the natural response of the antennas (i.e. delay and scaling).
- Stacking all angles in the side lobe region into a matrix $\mathbf{A}_{\text {sl }}$, the worst case side lobe gain is given by $\left\|\mathbf{A}_{\mathrm{s} 1}^{H} \mathbf{w}\right\|_{\infty}$

$$
\begin{array}{ll}
\min _{\mathbf{w}} & \left\|\mathbf{A}_{\mathrm{sl}}^{H} \mathbf{w}\right\|_{\infty} \\
\text { s.t. } & \mathbf{a}_{\mathrm{tar}}^{H} \mathbf{w}=1
\end{array}
$$

Optimized Beam Responses

Beam Pattern Optimization

Demo in Matlab

Next Subsection

(1) First Half

CVX: A Convex Optimisation Toolbox
Convex Sets
Convex Functions
(2) Second Half

Converting Convex Problems
Lagrange Duality

Proving Set Convexity

Methods

Proving Set Convexity

Methods

- Definition - C is convex if and only if
$\forall x_{1}, x_{2} \in C, \theta \in\{0,1\}, \theta x_{1}+(1-\theta) x_{2} \in C$.

Proving Set Convexity

Methods

- Definition - C is convex if and only if
$\forall x_{1}, x_{2} \in C, \theta \in\{0,1\}, \theta x_{1}+(1-\theta) x_{2} \in C$.
- Convexity Preserving Operations

Proving Set Convexity

Methods

- Definition - C is convex if and only if
$\forall x_{1}, x_{2} \in C, \theta \in\{0,1\}, \theta x_{1}+(1-\theta) x_{2} \in C$.
- Convexity Preserving Operations
- Intersection of convex sets

Proving Set Convexity

Methods

- Definition - C is convex if and only if

$$
\forall x_{1}, x_{2} \in C, \theta \in\{0,1\}, \theta x_{1}+(1-\theta) x_{2} \in C
$$

- Convexity Preserving Operations
- Intersection of convex sets
- Image of a convex set under an affine mapping

Proving Set Convexity

Methods

- Definition - C is convex if and only if

$$
\forall x_{1}, x_{2} \in C, \theta \in\{0,1\}, \theta x_{1}+(1-\theta) x_{2} \in C
$$

- Convexity Preserving Operations
- Intersection of convex sets
- Image of a convex set under an affine mapping
- ...

Example Problem: Quadratic Constraint Sets

Example 1: Quadratic Constraint Set

Show that the quadratic constraint set

$$
C=\left\{\mathbf{x} \mid \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{q}^{T} \mathbf{x}+c \leq 0\right\}
$$

is convex if $\mathbf{Q} \succeq \mathbf{0}$.

Example Problem: Quadratic Constraint Sets

Example 1: Quadratic Constraint Set

Show that the quadratic constraint set

$$
C=\left\{\mathbf{x} \mid \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{q}^{T} \mathbf{x}+c \leq 0\right\}
$$

is convex if $\mathbf{Q} \succeq \mathbf{0}$.
(Using the definition of a convex set is an unnecessarily hard way of showing this)

Example Problem: Quadratic Constraint Sets

Example 1: Quadratic Constraint Set

Show that the quadratic constraint set

$$
C=\left\{\mathbf{x} \mid \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{q}^{T} \mathbf{x}+c \leq 0\right\}
$$

is convex if $\mathbf{Q} \succeq \mathbf{0}$.
(Using the definition of a convex set is an unnecessarily hard way of showing this)
Three Alternatives

Example Problem: Quadratic Constraint Sets

Example 1: Quadratic Constraint Set

Show that the quadratic constraint set

$$
C=\left\{\mathbf{x} \mid \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{q}^{T} \mathbf{x}+c \leq 0\right\}
$$

is convex if $\mathbf{Q} \succeq \mathbf{0}$.
(Using the definition of a convex set is an unnecessarily hard way of showing this)
Three Alternatives

- Properties of convex sets

Example Problem: Quadratic Constraint Sets

Example 1: Quadratic Constraint Set

Show that the quadratic constraint set

$$
C=\left\{\mathbf{x} \mid \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{q}^{T} \mathbf{x}+c \leq 0\right\}
$$

is convex if $\mathbf{Q} \succeq \mathbf{0}$.
(Using the definition of a convex set is an unnecessarily hard way of showing this)
Three Alternatives

- Properties of convex sets
- Relationship with known convex sets

Example Problem: Quadratic Constraint Sets

Example 1: Quadratic Constraint Set

Show that the quadratic constraint set

$$
C=\left\{\mathbf{x} \mid \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{q}^{T} \mathbf{x}+c \leq 0\right\}
$$

is convex if $\mathbf{Q} \succeq \mathbf{0}$.
(Using the definition of a convex set is an unnecessarily hard way of showing this)
Three Alternatives

- Properties of convex sets
- Relationship with known convex sets
- Using properties of convex functions

Example Problem: Quadratic Constraint Sets

Intersection With Arbitrary Line

Example Problem: Quadratic Constraint Sets

Intersection With Arbitrary Line

Recall that a set is convex if and only if its intersection with an arbitrary line is convex.

Example Problem: Quadratic Constraint Sets

Intersection With Arbitrary Line

Recall that a set is convex if and only if its intersection with an arbitrary line is convex.

Define the arbitrary line $\mathbf{b}+t \mathbf{v}$ where $t \in \mathbb{R}$.

Example Problem: Quadratic Constraint Sets

Intersection With Arbitrary Line

Recall that a set is convex if and only if its intersection with an arbitrary line is convex.

Define the arbitrary line $\mathbf{b}+t \mathbf{v}$ where $t \in \mathbb{R}$. By substitution

$$
\begin{aligned}
\mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{q}^{T} \mathbf{x}+c & =(\mathbf{b}+t \mathbf{v})^{T} \mathbf{Q}(\mathbf{b}+t \mathbf{v})+\mathbf{q}^{T}(\mathbf{b}+t \mathbf{v})+c \\
& =\alpha t^{2}+\beta t+\gamma
\end{aligned}
$$

where $\alpha=\mathbf{v}^{T} \mathbf{Q} \mathbf{v}, \beta=\mathbf{b}^{T} \mathbf{Q} \mathbf{v}+\mathbf{q}^{T} \mathbf{v}$ and $\gamma=\mathbf{b}^{T} \mathbf{Q} \mathbf{b}+\mathbf{q}^{T} \mathbf{b}+c$.
If $\alpha \geq 0, C$ is a simple ellipsoid and is convex. For $\alpha \geq 0 \forall \mathbf{v}, \mathbf{Q} \succeq 0$.

Example Problem: Quadratic Constraint Sets

Relationship With Euclidean Ball

Example Problem: Quadratic Constraint Sets

Relationship With Euclidean Ball

Recall that the Euclidean ball given by

$$
\mathcal{E}=\left\{\mathbf{x} \mid\left(\mathbf{x}-\mathbf{x}_{c}\right)^{T} \mathbf{P}^{-1}\left(\mathbf{x}-\mathbf{x}_{c}\right) \leq 1\right\}
$$

where $\mathbf{P} \succ \mathbf{0}$.

Example Problem: Quadratic Constraint Sets

Relationship With Euclidean Ball

Recall that the Euclidean ball given by

$$
\mathcal{E}=\left\{\mathbf{x} \mid\left(\mathbf{x}-\mathbf{x}_{c}\right)^{T} \mathbf{P}^{-1}\left(\mathbf{x}-\mathbf{x}_{c}\right) \leq 1\right\}
$$

where $\mathbf{P} \succ \mathbf{0}$.
Expanding the quadratic form

$$
\mathcal{E}=\left\{\mathbf{x} \mid \mathbf{x}^{\top} \mathbf{P}^{-1} \mathbf{x}-2 \mathbf{x}_{c}^{T} \mathbf{P}^{-1} \mathbf{x}+\mathbf{x}_{c}^{\top} \mathbf{P}^{-1} \mathbf{x}_{c} \leq 1\right\}
$$

Example Problem: Quadratic Constraint Sets

Relationship With Euclidean Ball

Recall that the Euclidean ball given by

$$
\mathcal{E}=\left\{\mathbf{x} \mid\left(\mathbf{x}-\mathbf{x}_{c}\right)^{T} \mathbf{P}^{-1}\left(\mathbf{x}-\mathbf{x}_{c}\right) \leq 1\right\}
$$

where $\mathbf{P} \succ \mathbf{0}$.
Expanding the quadratic form

$$
\mathcal{E}=\left\{\mathbf{x} \mid \mathbf{x}^{T} \mathbf{P}^{-1} \mathbf{x}-2 \mathbf{x}_{c}^{T} \mathbf{P}^{-1} \mathbf{x}+\mathbf{x}_{c}^{T} \mathbf{P}^{-1} \mathbf{x}_{c} \leq 1\right\}
$$

which can be rewritten in the form

$$
C=\left\{\mathbf{x} \mid \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}+\mathbf{q}^{T} \mathbf{x}+c \leq 0\right\} .
$$

Example Problem: Quadratic Constraint Sets

Relationship With Euclidean Ball

Recall that the Euclidean ball given by

$$
\mathcal{E}=\left\{\mathbf{x} \mid\left(\mathbf{x}-\mathbf{x}_{c}\right)^{T} \mathbf{P}^{-1}\left(\mathbf{x}-\mathbf{x}_{c}\right) \leq 1\right\}
$$

where $\mathbf{P} \succ \mathbf{0}$.
Expanding the quadratic form

$$
\mathcal{E}=\left\{\mathbf{x} \mid \mathbf{x}^{T} \mathbf{P}^{-1} \mathbf{x}-2 \mathbf{x}_{c}^{T} \mathbf{P}^{-1} \mathbf{x}+\mathbf{x}_{c}^{T} \mathbf{P}^{-1} \mathbf{x}_{c} \leq 1\right\}
$$

which can be rewritten in the form

$$
C=\left\{\mathbf{x} \mid \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{q}^{T} \mathbf{x}+c \leq 0\right\} .
$$

Thus convexity is proven by association with a known convex set.

Example Problem: Quadratic Constraint Sets

Convexity of Quadratic Functions

Example Problem: Quadratic Constraint Sets

Convexity of Quadratic Functions

If $\mathbf{Q} \succeq \mathbf{0}$ then we know that the quadratic function $\mathbf{x}^{\top} \mathbf{Q} \mathbf{x}$ is convex.

Example Problem: Quadratic Constraint Sets

Convexity of Quadratic Functions

If $\mathbf{Q} \succeq \mathbf{0}$ then we know that the quadratic function $\mathbf{x}^{\top} \mathbf{Q} \mathbf{x}$ is convex.
Therefore, $\forall \mathbf{x}_{1}, \mathbf{x}_{2} \in C, \theta \in\{0,1\}$ it follows that

$$
\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}\right)^{\top} \mathbf{Q}\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}\right) \leq \theta \mathbf{x}_{1}^{\top} \mathbf{Q} \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}^{\top} \mathbf{Q} \mathbf{x}_{2}
$$

Example Problem: Quadratic Constraint Sets

Convexity of Quadratic Functions

If $\mathbf{Q} \succeq \mathbf{0}$ then we know that the quadratic function $\mathbf{x}^{\top} \mathbf{Q} \mathbf{x}$ is convex.
Therefore, $\forall \mathbf{x}_{1}, \mathbf{x}_{2} \in C, \theta \in\{0,1\}$ it follows that

$$
\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}\right)^{T} \mathbf{Q}\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}\right) \leq \theta \mathbf{x}_{1}^{T} \mathbf{Q} \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}^{T} \mathbf{Q} \mathbf{x}_{2}
$$

Therefore, we can show that

$$
\begin{aligned}
& \left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}\right)^{T} \mathbf{Q}\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}\right)+\mathbf{q}^{T}\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}\right)+c \\
& \leq \theta\left(\mathbf{x}_{1}^{T} \mathbf{Q} \mathbf{x}_{1}+\mathbf{q}^{T} \mathbf{x}_{1}+c\right)+(1-\theta)\left(\mathbf{x}_{2}^{T} \mathbf{Q} \mathbf{x}_{2}+\mathbf{q}^{T} \mathbf{x}_{2}+c\right) \leq 0
\end{aligned}
$$

such that C is a convex set.

Example Problem: Hyperbolic Constraint Sets

Example 2: Hyperbolic Sets

Example Problem: Hyperbolic Constraint Sets

Example 2: Hyperbolic Sets

Show that the hyperbolic constraint set

$$
C=\left\{\mathbf{x} \in \mathbb{R}_{+}^{2} \mid x_{1} x_{2} \geq 1\right\}
$$

is convex.

Example Problem: Hyperbolic Constraint Sets

Example 2: Hyperbolic Sets

Show that the hyperbolic constraint set

$$
C=\left\{\mathbf{x} \in \mathbb{R}_{+}^{2} \mid x_{1} x_{2} \geq 1\right\}
$$

is convex.
Hint: If $a, b \geq 0$ and $\theta \in[0,1]$, then $a^{\theta} b^{(1-\theta)} \leq \theta a+(1-\theta) b$.

Example Problem: Quadratic Constraint Sets

Consider two arbitrary points $\mathbf{x}_{a}, \mathbf{x}_{b} \in C$ and a scalar $\theta \in[0,1]$.

Example Problem: Quadratic Constraint Sets

Consider two arbitrary points $\mathbf{x}_{a}, \mathbf{x}_{b} \in C$ and a scalar $\theta \in[0,1]$. We want to show that

$$
\left(\theta x_{a, 1}+(1-\theta) x_{b, 1}\right)\left(\theta x_{a, 2}+(1-\theta) x_{b, 2}\right) \geq 1
$$

such that $\theta \mathbf{x}_{a}+(1-\theta) \mathbf{x}_{b} \in C$.

Example Problem: Quadratic Constraint Sets

Consider two arbitrary points $\mathbf{x}_{a}, \mathbf{x}_{b} \in C$ and a scalar $\theta \in[0,1]$. We want to show that

$$
\left(\theta x_{a, 1}+(1-\theta) x_{b, 1}\right)\left(\theta x_{a, 2}+(1-\theta) x_{b, 2}\right) \geq 1
$$

such that $\theta \mathbf{x}_{a}+(1-\theta) \mathbf{x}_{b} \in C$.
From the hint we know that

$$
\begin{aligned}
& \theta x_{a, 1}+(1-\theta) x_{b, 1} \geq x_{a, 1}^{\theta} x_{b, 1}^{(1-\theta)} \\
& \theta x_{a, 2}+(1-\theta) x_{b, 2} \geq x_{a, 2}^{\theta} x_{b, 2}^{(1-\theta)}
\end{aligned}
$$

Example Problem: Quadratic Constraint Sets

Consider two arbitrary points $\mathbf{x}_{a}, \mathbf{x}_{b} \in C$ and a scalar $\theta \in[0,1]$. We want to show that

$$
\left(\theta x_{a, 1}+(1-\theta) x_{b, 1}\right)\left(\theta x_{a, 2}+(1-\theta) x_{b, 2}\right) \geq 1
$$

such that $\theta \mathbf{x}_{a}+(1-\theta) \mathbf{x}_{b} \in C$.
From the hint we know that

$$
\begin{aligned}
& \theta x_{a, 1}+(1-\theta) x_{b, 1} \geq x_{a, 1}^{\theta} x_{b, 1}^{(1-\theta)} \\
& \theta x_{a, 2}+(1-\theta) x_{b, 2} \geq x_{a, 2}^{\theta} x_{b, 2}^{(1-\theta)}
\end{aligned}
$$

such that

$$
\left(\theta x_{a, 1}+(1-\theta) x_{b, 1}\right)\left(\theta x_{a, 2}+(1-\theta) x_{b, 2}\right) \geq x_{a, 1}^{\theta} x_{b, 1}^{(1-\theta)} x_{a, 2}^{\theta} x_{b, 2}^{(1-\theta)}
$$

Example Problem: Quadratic Constraint Sets

$$
\left(\theta x_{a, 1}+(1-\theta) x_{b, 1}\right)\left(\theta x_{a, 2}+(1-\theta) x_{b, 2}\right) \geq x_{a, 1}^{\theta} x_{b, 1}^{(1-\theta)} x_{a, 2}^{\theta} x_{b, 2}^{(1-\theta)}
$$

Example Problem: Quadratic Constraint Sets

$$
\left(\theta x_{a, 1}+(1-\theta) x_{b, 1}\right)\left(\theta x_{a, 2}+(1-\theta) x_{b, 2}\right) \geq x_{a, 1}^{\theta} x_{b, 1}^{(1-\theta)} x_{a, 2}^{\theta} x_{b, 2}^{(1-\theta)}
$$

Rearranging and applying the definition of C we get

$$
\begin{aligned}
\left(\theta x_{a, 1}+(1-\theta) x_{b, 1}\right)\left(\theta x_{a, 2}+(1-\theta) x_{b, 2}\right) & \geq\left(x_{a, 1} x_{a, 2}\right)^{\theta}\left(x_{b, 1} x_{b, 2}\right)^{(1-\theta)} \\
& \geq 1^{\theta} 1^{(1-\theta)} \\
& =1
\end{aligned}
$$

Example Problem: Quadratic Constraint Sets

$$
\left(\theta x_{a, 1}+(1-\theta) x_{b, 1}\right)\left(\theta x_{a, 2}+(1-\theta) x_{b, 2}\right) \geq x_{a, 1}^{\theta} x_{b, 1}^{(1-\theta)} x_{a, 2}^{\theta} x_{b, 2}^{(1-\theta)}
$$

Rearranging and applying the definition of C we get

$$
\begin{aligned}
\left(\theta x_{a, 1}+(1-\theta) x_{b, 1}\right)\left(\theta x_{a, 2}+(1-\theta) x_{b, 2}\right) & \geq\left(x_{a, 1} x_{a, 2}\right)^{\theta}\left(x_{b, 1} x_{b, 2}\right)^{(1-\theta)} \\
& \geq 1^{\theta} 1^{(1-\theta)} \\
& =1
\end{aligned}
$$

Therefore

$$
\left(\theta x_{a, 1}+(1-\theta) x_{b, 1}\right)\left(\theta x_{a, 2}+(1-\theta) x_{b, 2}\right) \geq 1
$$

for all $\mathbf{x}_{a}, \mathbf{x}_{b} \in C$ and a $\theta \in[0,1]$.

Example Problem: Quadratic Constraint Sets

$$
\left(\theta x_{a, 1}+(1-\theta) x_{b, 1}\right)\left(\theta x_{a, 2}+(1-\theta) x_{b, 2}\right) \geq x_{a, 1}^{\theta} x_{b, 1}^{(1-\theta)} x_{a, 2}^{\theta} x_{b, 2}^{(1-\theta)}
$$

Rearranging and applying the definition of C we get

$$
\begin{aligned}
\left(\theta x_{a, 1}+(1-\theta) x_{b, 1}\right)\left(\theta x_{a, 2}+(1-\theta) x_{b, 2}\right) & \geq\left(x_{a, 1} x_{a, 2}\right)^{\theta}\left(x_{b, 1} x_{b, 2}\right)^{(1-\theta)} \\
& \geq 1^{\theta} 1^{(1-\theta)} \\
& =1
\end{aligned}
$$

Therefore

$$
\left(\theta x_{a, 1}+(1-\theta) x_{b, 1}\right)\left(\theta x_{a, 2}+(1-\theta) x_{b, 2}\right) \geq 1
$$

for all $\mathbf{x}_{a}, \mathbf{x}_{b} \in C$ and a $\theta \in[0,1]$. In this way, C is a convex set.

Next Subsection

(1) First Half

CVX: A Convex Optimisation Toolbox
Convex Sets
Convex Functions
(2) Second Half

Converting Convex Problems
Lagrange Duality

Showing That a Function is Convex

Methods

Showing That a Function is Convex

Methods

- Definition - f is convex if and only if $\forall x_{1}, x_{2} \in \operatorname{dom}(f), \theta \in\{0,1\}, f\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right)$.

Showing That a Function is Convex

Methods

- Definition - f is convex if and only if $\forall x_{1}, x_{2} \in \operatorname{dom}(f), \theta \in\{0,1\}, f\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right)$.
- 1st order condition - $\forall x_{1}, x_{2} \in \operatorname{dom}(f), f\left(x_{1}\right) \geq f\left(x_{2}\right)+\nabla f\left(x_{2}\right)^{T}\left(x_{1}-x_{2}\right)$

Showing That a Function is Convex

Methods

- Definition - f is convex if and only if $\forall x_{1}, x_{2} \in \operatorname{dom}(f), \theta \in\{0,1\}, f\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right)$.
- 1st order condition $-\forall x_{1}, x_{2} \in \operatorname{dom}(f), f\left(x_{1}\right) \geq f\left(x_{2}\right)+\nabla f\left(x_{2}\right)^{T}\left(x_{1}-x_{2}\right)$
- 2nd order condition - $\forall x_{1} \in \operatorname{dom}(f), \nabla^{2} f\left(x_{1}\right) \succ 0$

Showing That a Function is Convex

Methods

- Definition - f is convex if and only if $\forall x_{1}, x_{2} \in \operatorname{dom}(f), \theta \in\{0,1\}, f\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right)$.
- 1st order condition - $\forall x_{1}, x_{2} \in \operatorname{dom}(f), f\left(x_{1}\right) \geq f\left(x_{2}\right)+\nabla f\left(x_{2}\right)^{T}\left(x_{1}-x_{2}\right)$
- 2nd order condition - $\forall x_{1} \in \operatorname{dom}(f), \nabla^{2} f\left(x_{1}\right) \succ 0$
- Composition rules - $f(x)=h \circ g(x)$ is convex if either h is convex, h^{\prime} is non-decreasing and g is convex or h is convex, h^{\prime} is non-increasing and g is concave.

Basic Example

Example Problem 1

Show that the function

$$
f(x, t)=-\log \left(t^{p}-\|x\|_{p}^{p}\right)
$$

is convex if where $p \geq 2$ and $\operatorname{dom}(f)=\left\{(x, t) \mid t>\|x\|_{p}\right\}$.

Basic Example

Example Problem 1

Show that the function

$$
f(x, t)=-\log \left(t^{p}-\|x\|_{p}^{p}\right)
$$

is convex if where $p \geq 2$ and $\operatorname{dom}(f)=\left\{(x, t) \mid t>\|x\|_{p}\right\}$.
(Using the definition of a convex function is unnecessarily hard)

Basic Example

Example Problem 1

Show that the function

$$
f(x, t)=-\log \left(t^{p}-\|x\|_{p}^{p}\right)
$$

is convex if where $p \geq 2$ and $\operatorname{dom}(f)=\left\{(x, t) \mid t>\|x\|_{p}\right\}$.
(Using the definition of a convex function is unnecessarily hard)
Alternatively we can use convexity preserving composition rules.

Basic Example

Example Problem 1

Begin by noting that

$$
\begin{aligned}
f(x, t) & =-\log \left(t^{p}-\|x\|_{p}^{p}\right) \\
& =-\log \left(t^{p-1}\right)-\log \left(t-\frac{\|x\|_{p}^{p}}{t^{p-1}}\right) \\
& =-(p-1) \log (t)-\log \left(t-\frac{\|x\|_{p}^{p}}{t^{p-1}}\right) .
\end{aligned}
$$

Basic Example

Example Problem 1

Begin by noting that

$$
\begin{aligned}
f(x, t) & =-\log \left(t^{p}-\|x\|_{p}^{p}\right) \\
& =-\log \left(t^{p-1}\right)-\log \left(t-\frac{\|x\|_{p}^{p}}{t^{p-1}}\right) \\
& =-(p-1) \log (t)-\log \left(t-\frac{\|x\|_{p}^{p}}{t^{p-1}}\right) .
\end{aligned}
$$

The left hand term is a convex function.

Basic Example

Example Problem 1

Begin by noting that

$$
\begin{aligned}
f(x, t) & =-\log \left(t^{p}-\|x\|_{p}^{p}\right) \\
& =-\log \left(t^{p-1}\right)-\log \left(t-\frac{\|x\|_{p}^{p}}{t^{p-1}}\right) \\
& =-(p-1) \log (t)-\log \left(t-\frac{\|x\|_{p}^{p}}{t^{p-1}}\right)
\end{aligned}
$$

The left hand term is a convex function. The right hand term is the composition of a convex, non-increasing function and

$$
t-\frac{\|x\|_{p}^{p}}{t^{p-1}} \geq 0
$$

Basic Example

Example Problem 1

Begin by noting that

$$
\begin{aligned}
f(x, t) & =-\log \left(t^{p}-\|x\|_{p}^{p}\right) \\
& =-\log \left(t^{p-1}\right)-\log \left(t-\frac{\|x\|_{p}^{p}}{t^{p-1}}\right) \\
& =-(p-1) \log (t)-\log \left(t-\frac{\|x\|_{p}^{p}}{t^{p-1}}\right)
\end{aligned}
$$

The left hand term is a convex function. The right hand term is the composition of a convex, non-increasing function and

$$
t-\frac{\|x\|_{p}^{p}}{t^{p-1}} \geq 0
$$

To show convexity this term must be concave, i.e. we want to show that $\frac{\|x\|_{p}^{p}}{t^{p-1}}$ is convex.

Basic Example

Example Problem 1

Basic Example

Example Problem 1

We can show convexity by noting a relationship with the known convex function $\frac{z}{s}$ i.e the perspective function.

Basic Example

Example Problem 1

We can show convexity by noting a relationship with the known convex function $\frac{z}{s}$ i.e the perspective function.

The perspective function is linear in z such that

$$
\frac{\|x\|_{p}^{p}}{s}
$$

is convex

Basic Example

Example Problem 1

We can show convexity by noting a relationship with the known convex function $\frac{z}{s}$ i.e the perspective function.

The perspective function is linear in z such that

$$
\frac{\|x\|_{p}^{p}}{s}
$$

is convex
This function is convex in $s>0$ and has a non-decreasing derivative such that

$$
\frac{\|x\|_{p}^{p}}{t^{p-1}}
$$

is convex for $p \geq 2$.

Basic Example

Example Problem 2

Show that the function

$$
f\left(x_{1}, x_{2}\right)=-x_{1}^{\alpha} x_{2}^{(1-\alpha)}
$$

is convex if where $\alpha \in[0,1]$ and $x_{1}, x_{2} \in \mathbb{R}_{++}$.

Basic Example

Example Problem 2

Show that the function

$$
f\left(x_{1}, x_{2}\right)=-x_{1}^{\alpha} x_{2}^{(1-\alpha)}
$$

is convex if where $\alpha \in[0,1]$ and $x_{1}, x_{2} \in \mathbb{R}_{++}$.
Chosen approach: 2nd order condition for convexity.

Basic Example

$$
f\left(x_{1}, x_{2}\right)=-x_{1}^{\alpha} x_{2}^{(1-\alpha)}
$$

Basic Example

$$
f\left(x_{1}, x_{2}\right)=-x_{1}^{\alpha} x_{2}^{(1-\alpha)}
$$

Due to the smoothness of this function we will use the second order convexity condition.

Basic Example

$$
f\left(x_{1}, x_{2}\right)=-x_{1}^{\alpha} x_{2}^{(1-\alpha)}
$$

Due to the smoothness of this function we will use the second order convexity condition.

$$
\nabla f\left(x_{1}, x_{2}\right)=-\left[\begin{array}{c}
\alpha x_{1}^{\alpha-1} x_{2}^{(1-\alpha)} \\
(1-\alpha) x_{1}^{\alpha} x_{2}^{-\alpha}
\end{array}\right]
$$

Basic Example

$$
f\left(x_{1}, x_{2}\right)=-x_{1}^{\alpha} x_{2}^{(1-\alpha)}
$$

Due to the smoothness of this function we will use the second order convexity condition.

$$
\begin{gathered}
\nabla f\left(x_{1}, x_{2}\right)=-\left[\begin{array}{cc}
\alpha x_{1}^{\alpha-1} x_{2}^{(1-\alpha)} \\
(1-\alpha) x_{1}^{\alpha} x_{2}^{-\alpha}
\end{array}\right] \\
\nabla f\left(x_{1}, x_{2}\right)^{2}=-\left[\begin{array}{cc}
\alpha(\alpha-1) x_{1}^{\alpha-2} x_{2}^{(1-\alpha)} & \alpha(1-\alpha) x_{1}^{\alpha-1} x_{2}^{(-\alpha)} \\
\alpha(1-\alpha) x_{1}^{\alpha-1} x_{2}^{(-\alpha)} & (1-\alpha)(-\alpha) x_{1}^{\alpha} x_{2}^{(-\alpha-1)}
\end{array}\right]
\end{gathered}
$$

Basic Example

$$
f\left(x_{1}, x_{2}\right)=-x_{1}^{\alpha} x_{2}^{(1-\alpha)}
$$

Due to the smoothness of this function we will use the second order convexity condition.

$$
\begin{gathered}
\nabla f\left(x_{1}, x_{2}\right)=-\left[\begin{array}{cc}
\alpha x_{1}^{\alpha-1} x_{2}^{(1-\alpha)} \\
(1-\alpha) x_{1}^{\alpha} x_{2}^{-\alpha}
\end{array}\right] \\
\nabla f\left(x_{1}, x_{2}\right)^{2}=-\left[\begin{array}{cc}
\alpha(\alpha-1) x_{1}^{\alpha-2} x_{2}^{(1-\alpha)} & \alpha(1-\alpha) x_{1}^{\alpha-1} x_{2}^{(-\alpha)} \\
\alpha(1-\alpha) x_{1}^{\alpha-1} x_{2}^{(-\alpha)} & (1-\alpha)(-\alpha) x_{1}^{\alpha} x_{2}^{(-\alpha-1)}
\end{array}\right] \\
=\alpha(1-\alpha) x_{1}^{\alpha} x_{2}^{1-\alpha}\left[\begin{array}{cc}
\frac{1}{x_{1}^{2}} & \frac{-1}{x_{1} x_{2}} \\
\frac{-1}{x_{1} x_{2}} & \frac{1}{x_{2}^{2}}
\end{array}\right]
\end{gathered}
$$

Basic Example

$$
f\left(x_{1}, x_{2}\right)=-x_{1}^{\alpha} x_{2}^{(1-\alpha)}
$$

Due to the smoothness of this function we will use the second order convexity condition.

$$
\begin{gathered}
\nabla f\left(x_{1}, x_{2}\right)=-\left[\begin{array}{cc}
\alpha x_{1}^{\alpha-1} x_{2}^{(1-\alpha)} \\
(1-\alpha) x_{1}^{\alpha} x_{2}^{-\alpha}
\end{array}\right] \\
\nabla f\left(x_{1}, x_{2}\right)^{2}=-\left[\begin{array}{cc}
\alpha(\alpha-1) x_{1}^{\alpha-2} x_{2}^{(1-\alpha)} & \alpha(1-\alpha) x_{1}^{\alpha-1} x_{2}^{(-\alpha)} \\
\alpha(1-\alpha) x_{1}^{\alpha-1} x_{2}^{(-\alpha)} & (1-\alpha)(-\alpha) x_{1}^{\alpha} x_{2}^{(-\alpha-1)}
\end{array}\right] \\
=\alpha(1-\alpha) x_{1}^{\alpha} x_{2}^{1-\alpha}\left[\begin{array}{cc}
\frac{1}{x_{1}^{2}} & \frac{-1}{x_{1} x_{2}} \\
\frac{-1}{x_{1} x_{2}} & \frac{1}{x_{2}^{2}}
\end{array}\right] \\
= \\
\alpha(1-\alpha) x_{1}^{\alpha} x_{2}^{1-\alpha}\left[\begin{array}{c}
\frac{1}{x_{1}} \\
\frac{1}{x_{2}}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{x_{1}} \\
\frac{1}{x_{2}}
\end{array}\right]^{T} \succeq \mathbf{0}
\end{gathered}
$$

Next Subsection

(1) First Half
 CVX: A Convex Optimisation Toolbox Convex Sets Convex Functions

(2) Second Half

Converting Convex Problems Lagrange Duality

General Form Problems

General Form Problem

General Form Problems

General Form Problem

Linear Program

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{c}^{T} \mathbf{x}-d \\
\text { s.t. } & \mathbf{G x} \preceq \mathbf{h} \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

General Form Problems

General Form Problem

Linear Program

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{c}^{T} \mathbf{x}-d \\
\text { s.t. } & \mathbf{G x} \preceq \mathbf{h} \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

Quadratic Program

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{x}^{T} \mathbf{Q} \mathbf{x}-\mathbf{q}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{G} \mathbf{x} \preceq \mathbf{h} \\
& \mathbf{A} \mathbf{x}=\mathbf{b}
\end{array}
$$

General Form Problems

General Form Problem

Linear Program

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{c}^{T} \mathbf{x}-d \\
\text { s.t. } & \mathbf{G x} \preceq \mathbf{h} \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

Second Order Cone Program

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \left\|\mathbf{A}_{i} \mathbf{x}+\mathbf{b}_{i}\right\|_{2} \preceq \mathbf{0} \forall i=1, \cdots, m \\
& \mathbf{A}_{0} \mathbf{x}+\mathbf{b}_{0}=\mathbf{0}
\end{array}
$$

Quadratic Program

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{x}^{T} \mathbf{Q} \mathbf{x}-\mathbf{q}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{G} \mathbf{x} \preceq \mathbf{h} \\
& \mathbf{A} \mathbf{x}=\mathbf{b}
\end{array}
$$

General Form Problems

General Form Problem

Linear Program

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{c}^{T} \mathbf{x}-d \\
\text { s.t. } & \mathbf{G x} \preceq \mathbf{h} \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

Second Order Cone Program

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \left\|\mathbf{A}_{i} \mathbf{x}+\mathbf{b}_{i}\right\|_{2} \preceq \mathbf{0} \forall i=1, \cdots, m \\
& \mathbf{A}_{0} \mathbf{x}+\mathbf{b}_{0}=\mathbf{0}
\end{array}
$$

Semidefinite Program

Quadratic Program

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{x}^{T} \mathbf{Q} \mathbf{x}-\mathbf{q}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{G} \mathbf{x} \preceq \mathbf{h} \\
& \mathbf{A} \mathbf{x}=\mathbf{b}
\end{array}
$$

Converting Convex Problems

Why bother converting?

- An additional method to show that a problem is convex
- Specific solvers may be designed for certain problem classes i.e LP, QP
- Use of such solvers can result in must computation.

Linear Programs

General Form Problem

Linear Program

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{c}^{T} \mathbf{x}-d \\
\text { s.t. } & \mathbf{G} \mathbf{x} \preceq \mathbf{h} \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

Standard Form Problem

Linear Program

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{c}^{T} \mathbf{x}-d \\
\text { s.t. } & \mathbf{x} \succeq \mathbf{0} \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

Example Problem From Text Book

Example Problem 1

Consider the problem

$$
\begin{array}{cl}
\min _{\mathbf{x}} & \|\mathbf{x}\|_{1} \\
\text { s.t. } & \left\|\mathbf{A}^{T} \mathbf{x}-\mathbf{b}\right\|_{\infty} \leq 1
\end{array}
$$

Convert the problem to a standard form problem of your choice.

Example Problem From Text Book

Example Problem 1

Consider the problem

$$
\begin{array}{cl}
\min _{\mathbf{x}} & \|\mathbf{x}\|_{1} \\
\text { s.t. } & \left\|\mathbf{A}^{T} \mathbf{x}-\mathbf{b}\right\|_{\infty} \leq 1
\end{array}
$$

Convert the problem to a standard form problem of your choice.

Is this a convex problem?

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \|\mathbf{x}\|_{1}=\sum_{i=1}^{N}\left|x_{i}\right| \\
\text { s.t. } & \left\|\mathbf{A}^{T} \mathbf{x}-\mathbf{b}\right\|_{\infty} \leq 1
\end{array}
$$

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \|\mathbf{x}\|_{1}=\sum_{i=1}^{N}\left|x_{i}\right| \\
\text { s.t. } & \left\|\mathbf{A}^{T} \mathbf{x}-\mathbf{b}\right\|_{\infty} \leq 1
\end{array}
$$

We will address the objective first.

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \|\mathbf{x}\|_{1}=\sum_{i=1}^{N}\left|x_{i}\right| \\
\text { s.t. } & \left\|\mathbf{A}^{T} \mathbf{x}-\mathbf{b}\right\|_{\infty} \leq 1
\end{array}
$$

We will address the objective first. We can introduce the additional vector variable v such that

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \sum_{i=1}^{N} v_{i}=\mathbf{1}^{T} \mathbf{v} \\
\text { s.t. } & \left\|\mathbf{A}^{T} \mathbf{x}-\mathbf{b}\right\|_{\infty} \leq 1 \\
& \left|x_{i}\right| \leq v_{i} \forall i=1, \cdots, N
\end{array}
$$

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{1}^{T} \mathbf{v} \\
\text { s.t. } & \left\|\mathbf{A}^{T} \mathbf{x}-\mathbf{b}\right\|_{\infty} \leq 1 \\
& \left|x_{i}\right| \leq v_{i} \forall i=1, \cdots, N
\end{array}
$$

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{1}^{T} \mathbf{v} \\
\text { s.t. } & \left\|\mathbf{A}^{T} \mathbf{x}-\mathbf{b}\right\|_{\infty} \leq 1 \\
& \left|x_{i}\right| \leq v_{i} \forall i=1, \cdots, N
\end{array}
$$

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{1}^{T} \mathbf{v} \\
\text { s.t. } & \left\|\mathbf{A}^{T} \mathbf{x}-\mathbf{b}\right\|_{\infty} \leq 1 \\
& \left|x_{i}\right| \leq v_{i} \forall i=1, \cdots, N
\end{array}
$$

We can then address the first constraint by noting its equivalence to

$$
\begin{array}{cl}
\min _{\mathbf{x}} & \mathbf{1}^{T} \mathbf{v} \\
\text { s.t. } & \left|\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}\right| \leq 1 \forall i=1, \cdots, N \\
& \left|x_{i}\right| \leq v_{i} \forall i=1, \cdots, N
\end{array}
$$

Example Problem From Text Book

$$
\begin{array}{cl}
\min _{\mathbf{x}} & \mathbf{1}^{T} \mathbf{v} \\
\text { s.t. } & \left|\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}\right| \leq 1 \forall i=1, \cdots, N \\
& \left|x_{i}\right| \leq v_{i} \forall i=1, \cdots, N
\end{array}
$$

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{1}^{T} \mathbf{v} \\
\text { s.t. } & \left|\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}\right| \leq 1 \forall i=1, \cdots, N \\
& \left|x_{i}\right| \leq v_{i} \forall i=1, \cdots, N
\end{array}
$$

Finally we can use the fact that all our variables are real valued to rewrite the inequality constraints as affine inequality constraints.

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{1}^{T} \mathbf{v} \\
\text { s.t. } & \left|\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}\right| \leq 1 \forall i=1, \cdots, N \\
& \left|x_{i}\right| \leq v_{i} \forall i=1, \cdots, N
\end{array}
$$

Finally we can use the fact that all our variables are real valued to rewrite the inequality constraints as affine inequality constraints.

$$
\begin{array}{cl}
\min _{\mathrm{x}} & \mathbf{1}^{T} \mathbf{v} \\
\text { s.t. } & -1 \leq \mathbf{a}_{i}^{T} \mathbf{x}-b_{i} \leq 1 \forall i=1, \cdots, N \\
& -v_{i} \leq x_{i} \leq v_{i} \forall i=1, \cdots, N
\end{array}
$$

Example Problem From Text Book

$$
\begin{array}{cl}
\min _{\mathbf{x}} & \mathbf{1}^{T} \mathbf{v} \\
\text { s.t. } & \left|\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}\right| \leq 1 \forall i=1, \cdots, N \\
& \left|x_{i}\right| \leq v_{i} \forall i=1, \cdots, N
\end{array}
$$

Finally we can use the fact that all our variables are real valued to rewrite the inequality constraints as affine inequality constraints.

$$
\begin{array}{ll}
\min _{\mathrm{x}} & \mathbf{1}^{T} \mathbf{v} \\
\text { s.t. } & -1 \leq \mathbf{a}_{i}^{T} \mathbf{x}-b_{i} \leq 1 \forall i=1, \cdots, N \\
& -v_{i} \leq x_{i} \leq v_{i} \forall i=1, \cdots, N
\end{array}
$$

The resulting problem is therefore an LP

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathrm{x}} & \mathbf{1}^{T} \mathbf{v} \\
\text { s.t. } & -1 \leq \mathbf{a}_{i}^{T} \mathbf{x}-b_{i} \leq 1 \forall i=1, \cdots, N \\
& -v_{i} \leq x_{i} \leq v_{i} \forall i=1, \cdots, N
\end{array}
$$

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathrm{x}} & 1^{T} \mathbf{v} \\
\text { s.t. } & -1 \leq \mathbf{a}_{i}^{T} \mathbf{x}-b_{i} \leq 1 \forall i=1, \cdots, N \\
& -v_{i} \leq x_{i} \leq v_{i} \forall i=1, \cdots, N
\end{array}
$$

Writing this in the general linear program form

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{1}^{T} \mathbf{v} \\
\text { s.t. } & {\left[\begin{array}{cc}
\mathbf{a}_{1}^{T} & \mathbf{0}^{T} \\
\vdots & \vdots \\
\mathbf{a}_{N}^{T} & \mathbf{0}^{T} \\
-\mathbf{a}_{1}^{T} & \mathbf{0}^{T} \\
\vdots & \\
-\mathbf{a}_{N}^{T} & \mathbf{0}^{T} \\
\mathbf{I} & \mathbf{I} \\
\mathbf{I} & -\mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x} \\
\mathbf{v}
\end{array}\right]+\left[\begin{array}{c}
1-b_{1} \\
\vdots \\
1-b_{N} \\
-1-b_{1} \\
-1-b_{N} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right] \succeq \mathbf{0}}
\end{array}
$$

Example Problem From Text Book

Example Problem 2a)

Consider the problem

$$
\begin{array}{cc}
\min _{x} & \frac{\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1}}{\mathbf{c}^{T} \mathbf{x}+d} \\
\text { s.t } & \|\mathbf{x}\|_{\infty} \leq 1
\end{array}
$$

where $d>\|\mathbf{c}\|_{1}$.

Example Problem From Text Book

Example Problem 2a)

Consider the problem

$$
\begin{array}{cl}
\min _{\mathbf{x}} & \frac{\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1}}{\mathbf{c}^{T} \mathbf{x}+d} \\
\text { s.t } & \|\mathbf{x}\|_{\infty} \leq 1
\end{array}
$$

where $d>\|\mathbf{c}\|_{1}$.
Show that the problem is quasi-convex.

Example Problem From Text Book

$$
\begin{array}{cc}
\min _{\mathbf{x}} & \frac{\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1}}{\mathbf{c}^{T} \mathbf{x}+d} \\
\text { s.t } & \|\mathbf{x}\|_{\infty} \leq 1
\end{array}
$$

Example Problem From Text Book

$$
\begin{array}{cc}
\min _{\mathbf{x}} & \frac{\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1}}{\mathbf{c}^{T} \mathbf{x}+d} \\
\text { s.t } & \|\mathbf{x}\|_{\infty} \leq 1
\end{array}
$$

A function is quasi-convex if and only if all its sublevel sets are convex

Example Problem From Text Book

$$
\begin{array}{cc}
\min _{x} & \frac{\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1}}{\mathbf{c}^{T} \mathbf{x}+d} \\
\text { s.t } & \|\mathbf{x}\|_{\infty} \leq 1
\end{array}
$$

A function is quasi-convex if and only if all its sublevel sets are convex i.e.

$$
\mathcal{S}_{\alpha}=\left\{\mathbf{x} \left\lvert\, \frac{\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1}}{\mathbf{c}^{T} \mathbf{x}+d} \leq \alpha\right.\right\} .
$$

Example Problem From Text Book

$$
\begin{array}{cc}
\min _{x} & \frac{\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1}}{\mathbf{c}^{T} \mathbf{x}+d} \\
\text { s.t } & \|\mathbf{x}\|_{\infty} \leq 1
\end{array}
$$

A function is quasi-convex if and only if all its sublevel sets are convex i.e.

$$
\mathcal{S}_{\alpha}=\left\{\mathbf{x} \left\lvert\, \frac{\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1}}{\mathbf{c}^{T} \mathbf{x}+d} \leq \alpha\right.\right\} .
$$

Note that this set can be rephrased as

$$
\mathcal{S}_{\alpha}=\left\{\mathbf{x} \mid\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1} \leq \alpha\left(\mathbf{c}^{T} \mathbf{x}+d\right)\right\}
$$

Example Problem From Text Book

Plotting the Sub-level Sets in Matlab

Example Problem From Text Book

The constraints

$$
\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1} \leq \alpha\left(\mathbf{c}^{\top} \mathbf{x}+d\right)
$$

can be rewritten by introducing the additional vector variable \mathbf{v}

Example Problem From Text Book

The constraints

$$
\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1} \leq \alpha\left(\mathbf{c}^{\top} \mathbf{x}+d\right)
$$

can be rewritten by introducing the additional vector variable \mathbf{v} such that

$$
\begin{aligned}
\mathbf{1}^{T} \mathbf{v} & \leq \alpha\left(\mathbf{c}^{T} \mathbf{x}+d\right) \\
-\mathbf{v} & \leq \mathbf{A} \mathbf{x}-\mathbf{b} \leq \mathbf{v}
\end{aligned}
$$

Example Problem From Text Book

The constraints

$$
\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1} \leq \alpha\left(\mathbf{c}^{\top} \mathbf{x}+d\right)
$$

can be rewritten by introducing the additional vector variable \mathbf{v} such that

$$
\begin{aligned}
\mathbf{1}^{T} \mathbf{v} & \leq \alpha\left(\mathbf{c}^{T} \mathbf{x}+d\right) \\
-\mathbf{v} & \leq \mathbf{A} \mathbf{x}-\mathbf{b} \leq \mathbf{v}
\end{aligned}
$$

i.e. as a set of standard affine inequalities and thus can be interpreted as an intersection of half-spaces.

Example Problem From Text Book

Example 2b)

Show that the problem

$$
\begin{array}{cc}
\min _{x} & \frac{\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1}}{\mathbf{c}^{T} \mathbf{x}+d} \\
\text { s.t } & \|\mathbf{x}\|_{\infty} \leq 1
\end{array}
$$

is equivalent to

$$
\begin{array}{cl}
\min _{\mathbf{x}} & \|\mathbf{A} \mathbf{y}-\mathbf{b} t\|_{1} \\
\text { s.t } & \|\mathbf{y}\|_{\infty} \leq t \\
& \mathbf{c}^{T} \mathbf{y}+d t=1
\end{array}
$$

and ultimately is equivalent to a linear problem.

Example Problem From Text Book

$$
\begin{array}{cl}
\min _{\mathbf{x}} & \frac{\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1}}{\mathbf{c}^{T} \mathbf{x}+d} \\
\text { s.t } & \|\mathbf{x}\|_{\infty} \leq 1
\end{array}
$$

Example Problem From Text Book

$$
\begin{aligned}
\min _{\mathbf{x}} & \frac{\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1}}{\mathbf{c}^{T} \mathbf{x}+d} \\
\text { s.t } & \|\mathbf{x}\|_{\infty} \leq 1
\end{aligned}
$$

We begin by introducing the additional variable t such that

$$
\begin{array}{ll}
\min _{\mathbf{x}} & t\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1} \\
\text { s.t } & \|\mathbf{x}\|_{\infty} \leq 1 \\
& \mathbf{c}^{T} \mathbf{x}+d \geq \frac{1}{t}
\end{array}
$$

Example Problem From Text Book

$$
\begin{aligned}
\min _{\mathbf{x}} & \frac{\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1}}{\mathbf{c}^{T} \mathbf{x}+d} \\
\text { s.t } & \|\mathbf{x}\|_{\infty} \leq 1
\end{aligned}
$$

We begin by introducing the additional variable t such that

$$
\begin{array}{ll}
\min _{\mathbf{x}} & t\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1} \\
\text { s.t } & \|\mathbf{x}\|_{\infty} \leq 1 \\
& \mathbf{c}^{T} \mathbf{x}+d \geq \frac{1}{t}
\end{array}
$$

Defining $\mathbf{y}=\mathbf{x} t$, it follows that

$$
\begin{array}{cl}
\min _{x} & \|\mathbf{A} \mathbf{y}-\mathbf{b} t\|_{1} \\
\text { s.t } & \|\mathbf{y}\|_{\infty} \leq t \\
& \mathbf{c}^{T} \mathbf{y}+d t \geq 1
\end{array}
$$

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \|\mathbf{A} \mathbf{y}-\mathbf{b} t\|_{1} \\
\text { s.t } & \|\mathbf{y}\|_{\infty} \leq t \\
& \mathbf{c}^{T} \mathbf{y}+d t \geq 1
\end{array}
$$

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \|\mathbf{A} \mathbf{y}-\mathbf{b} t\|_{1} \\
\text { s.t } & \|\mathbf{y}\|_{\infty} \leq t \\
& \mathbf{c}^{T} \mathbf{y}+d t \geq 1
\end{array}
$$

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \|\mathbf{A} \mathbf{y}-\mathbf{b} t\|_{1} \\
\text { s.t } & \|\mathbf{y}\|_{\infty} \leq t \\
& \mathbf{c}^{T} \mathbf{y}+d t \geq 1
\end{array}
$$

Similarly to Example 1, we introduce the vector variable v such that

$$
\begin{array}{cl}
\min _{\mathbf{x}} & \mathbf{1}^{T} \mathbf{v} \\
\text { s.t } & \|\mathbf{y}\|_{\infty} \leq t \\
& \mathbf{c}^{T} \mathbf{y}+d t \geq 1 \\
& \left|\mathbf{a}_{i} \mathbf{y}-\mathbf{b}_{i} t\right| \leq v_{i} \forall i=1, \cdots, N
\end{array}
$$

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{1}^{T} \mathbf{v} \\
\text { s.t } & \|\mathbf{y}\|_{\infty} \leq t \\
& \mathbf{c}^{T} \mathbf{y}+d t \geq 1 \\
& \left|\mathbf{a}_{i} \mathbf{y}-\mathbf{b}_{i} t\right| \leq v_{i} \forall i=1, \cdots, N
\end{array}
$$

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{1}^{T} \mathbf{v} \\
\text { s.t } & \|\mathbf{y}\|_{\infty} \leq t \\
& \mathbf{c}^{T} \mathbf{y}+d t \geq 1 \\
& \left|\mathbf{a}_{i} \mathbf{y}-\mathbf{b}_{i} t\right| \leq v_{i} \forall i=1, \cdots, N
\end{array}
$$

Finally we rewrite the constraints such that

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{1}^{T} \mathbf{v} \\
\text { s.t } & -t \leq \mathbf{y}_{i} \leq t \forall i=1, \cdots, N \\
& \mathbf{c}^{T} \mathbf{y}+d t \geq 1 \\
& -v_{i} \leq \mathbf{a}_{i} \mathbf{y}-\mathbf{b}_{i} t \leq v_{i} \forall i=1, \cdots, N
\end{array}
$$

which is in the general form of a linear program

Next Subsection

(1) First Half

CVX: A Convex Optimisation Toolbox Convex Sets
Convex Functions
(2) Second Half

Converting Convex Problems
Lagrange Duality

Lagrangian Duality

Why Use Lagrangian Duality?

Lagrangian Duality

Why Use Lagrangian Duality?

- Provide a convex lower bound of optimal value of primal problem

Lagrangian Duality

Why Use Lagrangian Duality?

- Provide a convex lower bound of optimal value of primal problem
- This bound is tight in the case of convex problems

Lagrangian Duality

Why Use Lagrangian Duality?

- Provide a convex lower bound of optimal value of primal problem
- This bound is tight in the case of convex problems
- Dual form problem may be easier to solve than primal one.

Lagrangian Duality

Why Use Lagrangian Duality?

- Provide a convex lower bound of optimal value of primal problem
- This bound is tight in the case of convex problems
- Dual form problem may be easier to solve than primal one.

Example Problem From Text Book

Example Problem 1

Consider the general form LP

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{c}^{T} \mathbf{x}-d \\
\text { s.t. } & \mathbf{G x} \preceq \mathbf{h} \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

Example Problem From Text Book

Example Problem 1

Consider the general form LP

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{c}^{T} \mathbf{x}-d \\
\text { s.t. } & \mathbf{G x} \preceq \mathbf{h} \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

Find the its equivalent dual problem.

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{c}^{T} \mathbf{x}-d \\
\text { s.t. } & \mathbf{G x} \preceq \mathbf{h} \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{c}^{T} \mathbf{x}-d \\
\text { s.t. } & \mathbf{G x} \preceq \mathbf{h} \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

The Lagrangian of this LP is given by

$$
\mathcal{L}(\mathbf{x}, \boldsymbol{\nu}, \boldsymbol{\mu})=\mathbf{c}^{T} \mathbf{x}-d+\boldsymbol{\nu}^{T}(\mathbf{G} \mathbf{x}-\mathbf{h})+\boldsymbol{\mu}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b}), \text { s.t. } \boldsymbol{\nu} \geq \mathbf{0}
$$

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{c}^{T} \mathbf{x}-d \\
\text { s.t. } & \mathbf{G x} \preceq \mathbf{h} \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

The Lagrangian of this LP is given by

$$
\mathcal{L}(\mathbf{x}, \boldsymbol{\nu}, \boldsymbol{\mu})=\mathbf{c}^{T} \mathbf{x}-d+\boldsymbol{\nu}^{T}(\mathbf{G} \mathbf{x}-\mathbf{h})+\boldsymbol{\mu}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b}), \text { s.t. } \boldsymbol{\nu} \geq \mathbf{0}
$$

As this is an affine function of x the dual function is given by

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{c}^{T} \mathbf{x}-d \\
\text { s.t. } & \mathbf{G x} \preceq \mathbf{h} \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

The Lagrangian of this LP is given by

$$
\mathcal{L}(\mathbf{x}, \boldsymbol{\nu}, \boldsymbol{\mu})=\mathbf{c}^{T} \mathbf{x}-d+\boldsymbol{\nu}^{T}(\mathbf{G} \mathbf{x}-\mathbf{h})+\boldsymbol{\mu}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b}), \text { s.t. } \boldsymbol{\nu} \geq \mathbf{0}
$$

As this is an affine function of x the dual function is given by

$$
g(\boldsymbol{\nu}, \boldsymbol{\mu})=\inf _{\mathbf{x}}\left(\mathbf{c}^{T} \mathbf{x}-d+\boldsymbol{\nu}^{T}(\mathbf{G} \mathbf{x}-\mathbf{h})+\boldsymbol{\mu}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})\right)
$$

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{\mathbf{x}} & \mathbf{c}^{T} \mathbf{x}-d \\
\text { s.t. } & \mathbf{G x} \preceq \mathbf{h} \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

The Lagrangian of this LP is given by

$$
\mathcal{L}(\mathbf{x}, \boldsymbol{\nu}, \boldsymbol{\mu})=\mathbf{c}^{T} \mathbf{x}-d+\boldsymbol{\nu}^{T}(\mathbf{G} \mathbf{x}-\mathbf{h})+\boldsymbol{\mu}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b}), \text { s.t. } \boldsymbol{\nu} \geq \mathbf{0}
$$

As this is an affine function of x the dual function is given by

$$
\begin{aligned}
g(\boldsymbol{\nu}, \boldsymbol{\mu}) & =\inf _{\mathbf{x}}\left(\mathbf{c}^{T} \mathbf{x}-d+\boldsymbol{\nu}^{T}(\mathbf{G} \mathbf{x}-\mathbf{h})+\boldsymbol{\mu}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})\right) \\
& = \begin{cases}-\boldsymbol{\nu}^{T} \mathbf{h}-\boldsymbol{\mu}^{T} \mathbf{b}-d & \text { if } \mathbf{c}+\mathbf{G}^{T} \boldsymbol{\nu}+\mathbf{A}^{T} \boldsymbol{\mu}=\mathbf{0} \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

Example Problem From Text Book

The dual problem is therefore

$$
\begin{array}{ll}
\min _{x} & -g(\boldsymbol{\nu}, \boldsymbol{\mu}) \\
\text { s.t. } & \boldsymbol{\nu} \geq \mathbf{0}
\end{array}
$$

Example Problem From Text Book

The dual problem is therefore

$$
\begin{array}{ll}
\min _{x} & -g(\boldsymbol{\nu}, \boldsymbol{\mu}) \\
\text { s.t. } & \boldsymbol{\nu} \geq \mathbf{0}
\end{array}
$$

Therefore substituting the definition of g

$$
\begin{array}{ll}
\min _{\mathrm{x}} & \boldsymbol{\nu}^{T} \mathbf{h}+\boldsymbol{\mu}^{T} \mathbf{b}+d \\
\text { s.t. } & \boldsymbol{\nu} \geq \mathbf{0} \\
& \mathbf{c}+\mathbf{G}^{T} \boldsymbol{\nu}+\mathbf{A}^{T} \boldsymbol{\mu}=\mathbf{0}
\end{array}
$$

Example Problem From Text Book

The dual problem is therefore

$$
\begin{array}{ll}
\min _{\mathrm{x}} & -g(\boldsymbol{\nu}, \boldsymbol{\mu}) \\
\text { s.t. } & \boldsymbol{\nu} \geq \mathbf{0}
\end{array}
$$

Therefore substituting the definition of g

$$
\begin{array}{ll}
\min _{\mathrm{x}} & \boldsymbol{\nu}^{T} \mathbf{h}+\boldsymbol{\mu}^{T} \mathbf{b}+d \\
\text { s.t. } & \boldsymbol{\nu} \geq \mathbf{0} \\
& \mathbf{c}+\mathbf{G}^{T} \boldsymbol{\nu}+\mathbf{A}^{T} \boldsymbol{\mu}=\mathbf{0}
\end{array}
$$

Which is interestingly another LP in standard form.

Example Problem From Text Book

Example Problem 2

Consider the linearly constrained norm problem

$$
\begin{array}{cl}
\min _{x} & \|\mathbf{x}\|_{1} \\
\text { s.t. } & \mathbf{C x}=\mathbf{d}
\end{array}
$$

Example Problem From Text Book

Example Problem 2

Consider the linearly constrained norm problem

$$
\begin{array}{ll}
\min _{x} & \|\mathbf{x}\|_{1} \\
\text { s.t. } & \mathbf{C x}=\mathbf{d}
\end{array}
$$

Find the its equivalent dual problem.

Example Problem From Text Book

$\min _{x}\|\mathbf{x}\|_{1}$
s.t. $\quad \mathbf{C x}=\mathbf{d}$

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{x} & \|\mathbf{x}\|_{1} \\
\text { s.t. } & \mathbf{C x}=\mathbf{d}
\end{array}
$$

The Lagrangian of this problem is given by

$$
\mathcal{L}(\mathbf{x}, \boldsymbol{\nu}, \boldsymbol{\mu})=\|\mathbf{x}\|_{1}-\boldsymbol{\lambda}^{T}(\mathbf{C} \mathbf{x}-\mathbf{d})
$$

Example Problem From Text Book

$$
\begin{array}{ll}
\min _{x} & \|\mathbf{x}\|_{1} \\
\text { s.t. } & \mathbf{C x}=\mathbf{d}
\end{array}
$$

The Lagrangian of this problem is given by

$$
\mathcal{L}(\mathbf{x}, \boldsymbol{\nu}, \boldsymbol{\mu})=\|\mathbf{x}\|_{1}-\boldsymbol{\lambda}^{T}(\mathbf{C} \mathbf{x}-\mathbf{d})
$$

The dual function is therefore given by

$$
\begin{aligned}
g(\boldsymbol{\lambda}) & =\inf _{\mathbf{x}}\left(\|\mathbf{x}\|_{1}-\boldsymbol{\lambda}^{T}(\mathbf{C} \mathbf{x}-\mathbf{d})\right) \\
& =-\sup _{\mathrm{x}}\left(\boldsymbol{\lambda}^{T}(\mathbf{C} \mathbf{x}-\mathbf{d})-\|\mathbf{x}\|_{1}\right) \\
& =-f^{*}(\boldsymbol{\lambda})
\end{aligned}
$$

Example Problem From Text Book

$$
g(\boldsymbol{\lambda})=-\sup _{\mathrm{x}}\left(\boldsymbol{\lambda}^{T}(\mathbf{C} \mathbf{x}-\mathbf{d})-\|\mathbf{x}\|_{1}\right)
$$

Example Problem From Text Book

$$
\begin{aligned}
g(\boldsymbol{\lambda}) & =-\sup _{\mathbf{x}}\left(\boldsymbol{\lambda}^{T}(\mathbf{C x}-\mathbf{d})-\|\mathbf{x}\|_{1}\right) \\
& =-\sup _{\mathbf{x}}\left((\mathbf{C} \boldsymbol{\lambda})^{T} \mathbf{x}-\|\mathbf{x}\|_{1}\right)-\boldsymbol{\lambda}^{T} \mathbf{d}
\end{aligned}
$$

Example Problem From Text Book

$$
\begin{aligned}
g(\boldsymbol{\lambda}) & =-\sup _{\mathrm{x}}\left(\boldsymbol{\lambda}^{T}(\mathbf{C} \mathbf{x}-\mathbf{d})-\|\mathbf{x}\|_{1}\right) \\
& =-\sup _{\mathrm{x}}\left((\mathbf{C} \boldsymbol{\lambda})^{T} \mathbf{x}-\|\mathbf{x}\|_{1}\right)-\boldsymbol{\lambda}^{T} \mathbf{d} \\
& = \begin{cases}-\boldsymbol{\lambda}^{T} \mathbf{d} & \text { if }\left(\mathbf{C}^{T} \boldsymbol{\lambda}\right)^{T} \mathbf{x} \leq\|\mathbf{x}\|_{1} \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

Example Problem From Text Book

$$
\begin{aligned}
g(\boldsymbol{\lambda}) & =-\sup _{\mathbf{x}}\left(\boldsymbol{\lambda}^{T}(\mathbf{C} \mathbf{x}-\mathbf{d})-\|\mathbf{x}\|_{1}\right) \\
& =-\sup _{\mathrm{x}}\left((\mathbf{C} \boldsymbol{\lambda})^{T} \mathbf{x}-\|\mathbf{x}\|_{1}\right)-\boldsymbol{\lambda}^{T} \mathbf{d} \\
& = \begin{cases}-\boldsymbol{\lambda}^{T} \mathbf{d} & \text { if }\left(\mathbf{C}^{T} \boldsymbol{\lambda}\right)^{T} \mathbf{x} \leq\|\mathbf{x}\|_{1} \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

Note that

$$
\mathbf{u}^{T} \mathbf{x} \leq\|\mathbf{x}\|_{1} \Longleftrightarrow \sup \left\{\left(\mathbf{u}^{T} \mathbf{x}\right) \mid\|\mathbf{x}\|_{1} \leq 1\right\} \leq 1
$$

Example Problem From Text Book

$$
g(\boldsymbol{\lambda})= \begin{cases}-\boldsymbol{\lambda}^{T} \mathbf{d} & \text { if } \sup \left\{\left(\left(\mathbf{C}^{T} \boldsymbol{\lambda}\right)^{T} \mathbf{x}\right) \mid\|\mathbf{x}\|_{1} \leq 1\right\} \leq 1 \\ -\infty & \text { otherwise }\end{cases}
$$

Example Problem From Text Book

$$
g(\boldsymbol{\lambda})= \begin{cases}-\boldsymbol{\lambda}^{T} \mathbf{d} & \text { if } \sup \left\{\left(\left(\mathbf{C}^{T} \boldsymbol{\lambda}\right)^{T} \mathbf{x}\right) \mid\|\mathbf{x}\|_{1} \leq 1\right\} \leq 1 \\ -\infty & \text { otherwise }\end{cases}
$$

From Example 2.25, $\sup \left\{\left(\mathbf{u}^{T} \mathbf{x}\right) \mid\|\mathbf{x}\| \leq 1\right\}=\|\mathbf{u}\|_{*}$ where $\|\bullet\|_{*}$ is the dual norm.

Example Problem From Text Book

$$
g(\boldsymbol{\lambda})= \begin{cases}-\boldsymbol{\lambda}^{T} \mathbf{d} & \text { if } \sup \left\{\left(\left(\mathbf{C}^{T} \boldsymbol{\lambda}\right)^{T} \mathbf{x}\right) \mid\|\mathbf{x}\|_{1} \leq 1\right\} \leq 1 \\ -\infty & \text { otherwise }\end{cases}
$$

From Example 2.25, sup $\left\{\left(\mathbf{u}^{T} \mathbf{x}\right) \mid\|\mathbf{x}\| \leq 1\right\}=\|\mathbf{u}\|_{*}$ where $\|\bullet\|_{*}$ is the dual norm.
Therefore the dual functions is given by

$$
g(\boldsymbol{\lambda})= \begin{cases}-\boldsymbol{\lambda}^{T} \mathbf{d} & \text { if }\left\|\mathbf{C}^{T} \boldsymbol{\lambda}\right\|_{\infty} \leq 1 \\ -\infty & \text { otherwise }\end{cases}
$$

Example Problem From Text Book

$$
g(\boldsymbol{\lambda})= \begin{cases}-\boldsymbol{\lambda}^{T} \mathbf{d} & \text { if } \sup \left\{\left(\left(\mathbf{C}^{T} \boldsymbol{\lambda}\right)^{T} \mathbf{x}\right) \mid\|\mathbf{x}\|_{1} \leq 1\right\} \leq 1 \\ -\infty & \text { otherwise }\end{cases}
$$

From Example 2.25, $\sup \left\{\left(\mathbf{u}^{T} \mathbf{x}\right) \mid\|\mathbf{x}\| \leq 1\right\}=\|\mathbf{u}\|_{*}$ where $\|\bullet\|_{*}$ is the dual norm.
Therefore the dual functions is given by

$$
g(\boldsymbol{\lambda})= \begin{cases}-\boldsymbol{\lambda}^{T} \mathbf{d} & \text { if }\left\|\mathbf{C}^{T} \boldsymbol{\lambda}\right\|_{\infty} \leq 1 \\ -\infty & \text { otherwise }\end{cases}
$$

The final dual problem is given by

$$
\begin{array}{ll}
\min _{\boldsymbol{\lambda}} & \boldsymbol{\lambda}^{T} \mathbf{d} \\
\text { s.t. } & \left\|\mathbf{C}^{T} \boldsymbol{\lambda}\right\|_{\infty} \leq 1
\end{array}
$$

Example Problem: Channel Capacity Maximisation

Channel Capacity Maximisation

Given an N element transmit antenna array, how can we distribute transmission power to maximise the rate of data transmission back to a target source?

Example Problem: Channel Capacity Maximisation

Channel Capacity Maximisation

Given an N element transmit antenna array, how can we distribute transmission power to maximise the rate of data transmission back to a target source?

In the case of an additive Gaussian channel, this corresponds to

$$
\begin{array}{ll}
\max _{\mathrm{x}} & \sum_{i=1}^{N} \log _{2}\left(1+\frac{x_{i}}{\sigma_{i}}\right) \\
\text { s.t. } & x_{i} \geq 0 \forall i=1, \cdots, N \\
& \mathbf{1}^{T} \mathbf{x}=1
\end{array}
$$

where σ_{i} is the bandwidth and noise variance per antenna.

Example Problem: Channel Capacity Maximisation

$$
\begin{array}{cl}
\max _{\mathrm{x}} & \sum_{i=1}^{N} B_{i} \log _{2}\left(1+\frac{x_{i}}{\sigma_{i}}\right) \\
\text { s.t. } & x_{i} \geq 0 \forall i=1, \cdots, N \\
& \mathbf{1}^{T} \mathbf{x}=1
\end{array}
$$

Example Problem: Channel Capacity Maximisation

$$
\begin{array}{cl}
\max _{\mathrm{x}} & \sum_{i=1}^{N} B_{i} \log _{2}\left(1+\frac{x_{i}}{\sigma_{i}}\right) \\
\text { s.t. } & x_{i} \geq 0 \forall i=1, \cdots, N \\
& \mathbf{1}^{T} \mathbf{x}=1
\end{array}
$$

Is the problem convex?

Example Problem: Channel Capacity Maximisation

$$
\begin{array}{cl}
\max _{\mathrm{x}} & \sum_{i=1}^{N} B_{i} \log _{2}\left(1+\frac{x_{i}}{\sigma_{i}}\right) \\
\text { s.t. } & x_{i} \geq 0 \forall i=1, \cdots, N \\
& \mathbf{1}^{T} \mathbf{x}=1
\end{array}
$$

Is the problem convex?

Objective

As the composition of a non-decreasing concave function and an affine function, the objective is concave. Maximising a concave function is equivalent to minimising a convex function.

Example Problem: Channel Capacity Maximisation

$$
\begin{array}{ll}
\max _{\mathbf{x}} & \sum_{i=1}^{N} B_{i} \log _{2}\left(1+\frac{x_{i}}{\sigma_{i}}\right) \\
\text { s.t. } & x_{i} \geq 0 \forall i=1, \cdots, N \\
& \mathbf{1}^{T} \mathbf{x}=1
\end{array}
$$

Is the problem convex?

Objective

As the composition of a non-decreasing concave function and an affine function, the objective is concave. Maximising a concave function is equivalent to minimising a convex function.

Domain

The constraints are affine by nature therefore define a convex set.

Channel Capacity Maximisation

Using log laws the objective can be rewritten as

$$
\sum_{i=1}^{N} \log _{2}\left(1+\frac{x_{i}}{\sigma_{i}}\right)=\frac{1}{\log (2)} \sum_{i=1}^{N}\left(\log \left(\sigma_{i}+x_{i}\right)-\log \left(\sigma_{i}\right)\right)
$$

Channel Capacity Maximisation

Using log laws the objective can be rewritten as

$$
\sum_{i=1}^{N} \log _{2}\left(1+\frac{x_{i}}{\sigma_{i}}\right)=\frac{1}{\log (2)} \sum_{i=1}^{N}\left(\log \left(\sigma_{i}+x_{i}\right)-\log \left(\sigma_{i}\right)\right)
$$

The problem is equivalent to

$$
\begin{array}{ll}
\min _{\mathrm{x}} & -\sum_{i=1}^{N} \log \left(\sigma_{i}+x_{i}\right) \\
\text { s.t. } & x_{i} \geq 0 \forall i=1, \cdots, N \\
& \mathbf{1}^{T} \mathbf{x}=1
\end{array}
$$

Channel Capacity Maximisation

Using log laws the objective can be rewritten as

$$
\sum_{i=1}^{N} \log _{2}\left(1+\frac{x_{i}}{\sigma_{i}}\right)=\frac{1}{\log (2)} \sum_{i=1}^{N}\left(\log \left(\sigma_{i}+x_{i}\right)-\log \left(\sigma_{i}\right)\right)
$$

The problem is equivalent to

$$
\begin{array}{ll}
\min _{\mathrm{x}} & -\sum_{i=1}^{N} \log \left(\sigma_{i}+x_{i}\right) \\
\text { s.t. } & x_{i} \geq 0 \forall i=1, \cdots, N \\
& \mathbf{1}^{T} \mathbf{x}=1
\end{array}
$$

Channel Capacity Maximisation

Using log laws the objective can be rewritten as

$$
\sum_{i=1}^{N} \log _{2}\left(1+\frac{x_{i}}{\sigma_{i}}\right)=\frac{1}{\log (2)} \sum_{i=1}^{N}\left(\log \left(\sigma_{i}+x_{i}\right)-\log \left(\sigma_{i}\right)\right)
$$

The problem is equivalent to

$$
\begin{array}{ll}
\min _{x} & -\sum_{i=1}^{N} \log \left(\sigma_{i}+x_{i}\right) \\
\text { s.t. } & x_{i} \geq 0 \forall i=1, \cdots, N \\
& \mathbf{1}^{T} \mathbf{x}=1
\end{array}
$$

How can we go about solving this?

Channel Capacity Maximisation

The Lagrangian of this problem is given by

$$
\mathcal{L}(x, \nu, \mu)=\sum_{i=1}^{N}\left(-\log \left(\sigma_{i}+x_{i}\right)+\nu_{i} x_{i}-\mu x_{i}\right)-\mu
$$

Channel Capacity Maximisation

The Lagrangian of this problem is given by

$$
\mathcal{L}(x, \boldsymbol{\nu}, \mu)=\sum_{i=1}^{N}\left(-\log \left(\sigma_{i}+x_{i}\right)+\nu_{i} x_{i}-\mu x_{i}\right)-\mu
$$

KKT Conditions

Channel Capacity Maximisation

The Lagrangian of this problem is given by

$$
\mathcal{L}(x, \boldsymbol{\nu}, \mu)=\sum_{i=1}^{N}\left(-\log \left(\sigma_{i}+x_{i}\right)+\nu_{i} x_{i}-\mu x_{i}\right)-\mu
$$

KKT Conditions

$$
\text { Primal Optimality } \quad-\frac{1}{\sigma_{i}+x_{i}^{*}}-\nu_{i}^{*}+\mu^{*}=0
$$

Channel Capacity Maximisation

The Lagrangian of this problem is given by

$$
\mathcal{L}(x, \nu, \mu)=\sum_{i=1}^{N}\left(-\log \left(\sigma_{i}+x_{i}\right)+\nu_{i} x_{i}-\mu x_{i}\right)-\mu
$$

KKT Conditions

$$
\text { Primal Optimality }-\frac{1}{\sigma_{i}+x_{i}^{*}}-\nu_{i}^{*}+\mu^{*}=0
$$

$$
\begin{aligned}
\text { Primal Feasibility } \quad \mathbf{1}^{T} \mathbf{x}^{*} & =1 \\
x_{i}^{*} & \geq 0 \forall i=1, \cdots, N
\end{aligned}
$$

Channel Capacity Maximisation

The Lagrangian of this problem is given by

$$
\mathcal{L}(x, \nu, \mu)=\sum_{i=1}^{N}\left(-\log \left(\sigma_{i}+x_{i}\right)+\nu_{i} x_{i}-\mu x_{i}\right)-\mu
$$

KKT Conditions

$$
\text { Primal Optimality } \quad-\frac{1}{\sigma_{i}+x_{i}^{*}}-\nu_{i}^{*}+\mu^{*}=0
$$

$$
\begin{aligned}
& \text { Primal Feasibility } \quad \mathbf{1}^{\top} \mathbf{x}^{*}=1 \\
& x_{i}^{*} \geq 0 \forall i=1, \cdots, N \\
& \text { Dual Feasibility } \quad \nu_{i}^{*} \geq 0 \forall i=1, \cdots, N
\end{aligned}
$$

Channel Capacity Maximisation

The Lagrangian of this problem is given by

$$
\mathcal{L}(x, \boldsymbol{\nu}, \mu)=\sum_{i=1}^{N}\left(-\log \left(\sigma_{i}+x_{i}\right)+\nu_{i} x_{i}-\mu x_{i}\right)-\mu
$$

KKT Conditions

$$
\text { Primal Optimality }-\frac{1}{\sigma_{i}+x_{i}^{*}}-\nu_{i}^{*}+\mu^{*}=0
$$

$$
\begin{aligned}
\text { Primal Feasibility } & \mathbf{1}^{\top} \mathbf{x}^{*}=1 \\
& x_{i}^{*} \geq 0 \forall i=1, \cdots, N \\
\text { Dual Feasibility } & \nu_{i}^{*} \geq 0 \forall i=1, \cdots, N
\end{aligned}
$$

$$
\text { Complementary Slackness } \quad \nu_{i}^{*} x_{i}^{*}=0 \forall i=1, \cdots, N
$$

Channel Capacity Maximisation

Primal optimality implies that

$$
\nu_{i}^{*}=\mu^{*}-\frac{1}{\sigma_{i}+x_{i}^{*}}
$$

Channel Capacity Maximisation

Primal optimality implies that

$$
\nu_{i}^{*}=\mu^{*}-\frac{1}{\sigma_{i}+x_{i}^{*}}
$$

which, combined with dual feasibility implies

$$
\frac{1}{\sigma_{i}+x_{i}^{*}} \leq \mu^{*}
$$

Channel Capacity Maximisation

Primal optimality implies that

$$
\nu_{i}^{*}=\mu^{*}-\frac{1}{\sigma_{i}+x_{i}^{*}}
$$

which, combined with dual feasibility implies

$$
\frac{1}{\sigma_{i}+x_{i}^{*}} \leq \mu^{*}
$$

If $\mu^{*}<\frac{1}{\sigma_{i}}$ this can only hold if $x_{i}^{*}>0$ in which case complementary slackness means $\nu_{i}^{*}=0$.

Channel Capacity Maximisation

Primal optimality implies that

$$
\nu_{i}^{*}=\mu^{*}-\frac{1}{\sigma_{i}+x_{i}^{*}}
$$

which, combined with dual feasibility implies

$$
\frac{1}{\sigma_{i}+x_{i}^{*}} \leq \mu^{*}
$$

If $\mu^{*}<\frac{1}{\sigma_{i}}$ this can only hold if $x_{i}^{*}>0$ in which case complementary slackness means $\nu_{i}^{*}=0$.

$$
x_{i}^{*}= \begin{cases}0 & \text { if } \mu^{*}>\frac{1}{\sigma_{i}} \\ \frac{1}{\mu^{*}}-\sigma_{i} & \text { otherwise }\end{cases}
$$

Channel Capacity Maximisation

Primal optimality implies that

$$
\nu_{i}^{*}=\mu^{*}-\frac{1}{\sigma_{i}+x_{i}^{*}}
$$

which, combined with dual feasibility implies

$$
\frac{1}{\sigma_{i}+x_{i}^{*}} \leq \mu^{*}
$$

If $\mu^{*}<\frac{1}{\sigma_{i}}$ this can only hold if $x_{i}^{*}>0$ in which case complementary slackness means $\nu_{i}^{*}=0$.

$$
x_{i}^{*}= \begin{cases}0 & \text { if } \mu^{*}>\frac{1}{\sigma_{i}} \\ \frac{1}{\mu^{*}}-\sigma_{i} & \text { otherwise }\end{cases}
$$

Finally, primal feasibility implies that

$$
\sum_{i \in C}\left(\frac{1}{\mu^{*}}-\sigma_{i}\right)=1
$$

where C is the set of i 's such that $\mu^{*}>\frac{1}{\sigma}$.

Channel Capacity Maximisation

Primal optimality implies that

$$
\nu_{i}^{*}=\mu^{*}-\frac{1}{\sigma_{i}+x_{i}^{*}}
$$

which, combined with dual feasibility implies

$$
\frac{1}{\sigma_{i}+x_{i}^{*}} \leq \mu^{*}
$$

If $\mu^{*}<\frac{1}{\sigma_{i}}$ this can only hold if $x_{i}^{*}>0$ in which case complementary slackness means $\nu_{i}^{*}=0$.

$$
x_{i}^{*}= \begin{cases}0 & \text { if } \mu^{*}>\frac{1}{\sigma_{i}} \\ \frac{1}{\mu^{*}}-\sigma_{i} & \text { otherwise }\end{cases}
$$

Finally, primal feasibility implies that

$$
\sum_{i \in C}\left(\frac{1}{\mu^{*}}-\sigma_{i}\right)=1
$$

where C is the set of i 's such that $\mu^{*}>\frac{1}{\sigma}$. Solve with bisection method to find μ^{*} and thus x^{*}.

Channel Capacity Maximisation

Alternatively Solve with CVX


```
cvx_begin
    variable x(n)
    minimize sum(-log}(\operatorname{sigma}+\textrm{x}))
    subject to
        ones(n,1),*x * = = 
        x > = 0
cvx_end
```


Channel Capacity Maximisation

Dual Variables with CVX


```
cvx_begin
    variable x(n)
    dual variable mu
    dual variable nu(n)
    minimize sum(-log(sigma +x)))
    subject to
        mu: ones(n,1)' * x == 1
        nu: x >=0
cvx_end
```


Channel Capacity Maximisation

Demo in Matlab

