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What is CVX?

• CVX is a modeling system for convex optimisation problems

• Website: http://cvxr.com/cvx

min
x

f (x)

s.t. Ax = b

g(x) ≤ 0

cvx begin

variables x(n)

minimize (· · · )

. . .

cvx end

x∗
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Structure of Convex Problems

Mathematically1

min
x

f0(x)

s.t. fi (x) ≤ 0, i = 1, · · · ,m
hj(x) = 0, j = 1, · · · , p

In CVX

cvx begin

variables x(n)

minimize (f0(x))

subject to

f(x) <= 0

A * x - b == 0

cvx end

1f0 and fi must be convex and hi must be affine.
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Return Values

Upon exit, CVX sets the variables

• x - solution variables(s) x∗

• cvx optval - the optimal value p∗

• cvx status - solver status (Solved, Unbounded, Infeasible,· · · )

• · · ·
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Basic Example - LP

Optimization Problem

min
x

cTx

s.t. Ax = b

x ≥ 0

In CVX

cvx begin

variables x(n)

minimize (c’ * x)

subject to

A * x - b == 0

x >= 0

cvx end
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Basic Example - LP

Demo in Matlab
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Practical Example
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Matched Filter Response

Beam Pattern Optimization

Given an arbitrary N element antenna
array, design a configuration for the
antennas such that

• The gain in a target direction is
unity (target signal is preserved)

• The worst case side lobe gain of the
setup is minimized

The task is to design a set of weights w to
meet these performance requirements.
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Beam Pattern Optimization
Problem Setup

• Discretise angles of arrival into M points i.e. θ = 1, 2, · · · , 360 and split into
main lobe and side lobe regions.

• Given a weight vector w, the gain response of the array in direction i is given
by |aH

i w| where ai captures the natural response of the antennas (i.e. delay and
scaling).

• Stacking all angles in the side lobe region into a matrix Asl, the worst case side
lobe gain is given by ‖AH

slw‖∞

min
w

‖AH
slw‖∞

s.t. aH
tarw = 1

cvx begin

variable w(n) complex

minimize (norm(A sl’ * w,Inf))

subject to

a tar’ * w == 1

cvx end
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Optimized Beam Responses
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Beam Pattern Optimization

Demo in Matlab
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Proving Set Convexity

Methods

• Definition - C is convex if and only if
∀ x1, x2 ∈ C , θ ∈ {0, 1}, θx1 + (1− θ)x2 ∈ C .

• Convexity Preserving Operations

• Intersection of convex sets
• Image of a convex set under an affine mapping
• · · ·
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Example Problem: Quadratic Constraint Sets

Example 1: Quadratic Constraint Set

Show that the quadratic constraint set

C = {x | xTQx + qTx + c ≤ 0}

is convex if Q � 0.

(Using the definition of a convex set is an unnecessarily hard way of showing this)

Three Alternatives

• Properties of convex sets

• Relationship with known convex sets

• Using properties of convex functions
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Example Problem: Quadratic Constraint Sets

Intersection With Arbitrary Line

Recall that a set is convex if and only if its intersection with an arbitrary line is
convex.

Define the arbitrary line b + tv where t ∈ R. By substitution

xTQx + qTx + c = (b + tv)T Q (b + tv) + qT (b + tv) + c

= αt2 + βt + γ

where α = vTQv, β = bTQv + qTv and γ = bTQb + qTb + c.

If α ≥ 0, C is a simple ellipsoid and is convex. For α ≥ 0∀v, Q � 0.
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Example Problem: Quadratic Constraint Sets

Relationship With Euclidean Ball

Recall that the Euclidean ball given by

E = {x | (x− xc)T P−1 (x− xc) ≤ 1}

where P � 0.

Expanding the quadratic form

E = {x | xTP−1x− 2xT
c P−1x + xT

c P−1xc ≤ 1}

which can be rewritten in the form

C = {x | xTQx + qTx + c ≤ 0}.

Thus convexity is proven by association with a known convex set.
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Example Problem: Quadratic Constraint Sets

Convexity of Quadratic Functions

If Q � 0 then we know that the quadratic function xTQx is convex.

Therefore, ∀ x1, x2 ∈ C , θ ∈ {0, 1} it follows that

(θx1 + (1− θ)x2)T Q (θx1 + (1− θ)x2) ≤ θxT
1 Qx1 + (1− θ)xT

2 Qx2

Therefore, we can show that

(θx1 + (1− θ)x2)T Q (θx1 + (1− θ)x2) + qT (θx1 + (1− θ)x2) + c

≤ θ
(

xT
1 Qx1 + qTx1 + c

)
+ (1− θ)

(
xT
2 Qx2 + qTx2 + c

)
≤ 0

such that C is a convex set.
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Example Problem: Hyperbolic Constraint Sets

Example 2: Hyperbolic Sets

Show that the hyperbolic constraint set

C = {x ∈ R2
+ | x1x2 ≥ 1}

is convex.

Hint: If a, b ≥ 0 and θ ∈ [0, 1], then aθb(1−θ) ≤ θa + (1− θ)b.
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Example Problem: Quadratic Constraint Sets

Consider two arbitrary points xa, xb ∈ C and a scalar θ ∈ [0, 1].

We want to show
that

(θxa,1 + (1− θ)xb,1)(θxa,2 + (1− θ)xb,2) ≥ 1

such that θxa + (1− θ)xb ∈ C .

From the hint we know that

θxa,1 + (1− θ)xb,1 ≥ xθa,1x
(1−θ)
b,1

θxa,2 + (1− θ)xb,2 ≥ xθa,2x
(1−θ)
b,2

such that

(θxa,1 + (1− θ)xb,1)(θxa,2 + (1− θ)xb,2) ≥ xθa,1x
(1−θ)
b,1 xθa,2x

(1−θ)
b,2
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Example Problem: Quadratic Constraint Sets

(θxa,1 + (1− θ)xb,1)(θxa,2 + (1− θ)xb,2) ≥ xθa,1x
(1−θ)
b,1 xθa,2x

(1−θ)
b,2

Rearranging and applying the definition of C we get

(θxa,1 + (1− θ)xb,1)(θxa,2 + (1− θ)xb,2) ≥ (xa,1xa,2)θ(xb,1xb,2)(1−θ)

≥ 1θ1(1−θ)

= 1

Therefore

(θxa,1 + (1− θ)xb,1)(θxa,2 + (1− θ)xb,2) ≥ 1

for all xa, xb ∈ C and a θ ∈ [0, 1]. In this way, C is a convex set.
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Next Subsection

1 First Half
CVX: A Convex Optimisation Toolbox
Convex Sets
Convex Functions

2 Second Half
Converting Convex Problems
Lagrange Duality
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Showing That a Function is Convex

Methods

• Definition - f is convex if and only if
∀ x1, x2 ∈ dom(f ), θ ∈ {0, 1}, f (θx1 + (1− θ)x2) ≤ θf (x1) + (1− θ)f (x2).

• 1st order condition - ∀ x1, x2 ∈ dom(f ), f (x1) ≥ f (x2) +∇f (x2)T (x1 − x2)

• 2nd order condition - ∀ x1 ∈ dom(f ), ∇2f (x1) � 0

• Composition rules - f (x) = h ◦ g(x) is convex if either h is convex, h′ is
non-decreasing and g is convex or h is convex, h′ is non-increasing and g is
concave.
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Basic Example

Example Problem 1

Show that the function

f (x , t) = − log(tp − ‖x‖pp)

is convex if where p ≥ 2 and dom(f ) = {(x , t)|t > ‖x‖p}.

(Using the definition of a convex function is unnecessarily hard)

Alternatively we can use convexity preserving composition rules.
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Basic Example

Example Problem 1

Begin by noting that

f (x , t) = − log(tp − ‖x‖pp)

= − log(tp−1)− log

(
t −
‖x‖pp
tp−1

)
= −(p − 1) log(t)− log

(
t −
‖x‖pp
tp−1

)
.

The left hand term is a convex function. The right hand term is the composition of a
convex, non-increasing function and

t −
‖x‖pp
tp−1

≥ 0.

To show convexity this term must be concave, i.e. we want to show that
‖x‖pp
tp−1 is

convex.
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Basic Example

Example Problem 1

We can show convexity by noting a relationship with the known convex function z
s

i.e
the perspective function.

The perspective function is linear in z such that

‖x‖pp
s

is convex

This function is convex in s > 0 and has a non-decreasing derivative such that

‖x‖pp
tp−1

is convex for p ≥ 2.
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Basic Example

Example Problem 2

Show that the function

f (x1, x2) = −xα1 x
(1−α)
2

is convex if where α ∈ [0, 1] and x1, x2 ∈ R++.

Chosen approach: 2nd order condition for convexity.
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Basic Example

f (x1, x2) = −xα1 x
(1−α)
2

Due to the smoothness of this function we will use the second order convexity
condition.

∇f (x1, x2) = −
[
αxα−1

1 x
(1−α)
2

(1− α)xα1 x
−α
2

]

∇f (x1, x2)2 = −

[
α(α− 1)xα−2

1 x
(1−α)
2 α(1− α)xα−1

1 x
(−α)
2

α(1− α)xα−1
1 x

(−α)
2 (1− α)(−α)xα1 x

(−α−1)
2

]

= α(1− α)xα1 x
1−α
2

[
1
x21

−1
x1x2

−1
x1x2

1
x22

]

= α(1− α)xα1 x
1−α
2

[ 1
x1−1
x2

] [ 1
x1−1
x2

]T
� 0
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Next Subsection

1 First Half
CVX: A Convex Optimisation Toolbox
Convex Sets
Convex Functions

2 Second Half
Converting Convex Problems
Lagrange Duality
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General Form Problems

General Form Problem

Linear Program

min
x

cTx− d

s.t. Gx � h

Ax = b

Quadratic Program

min
x

xTQx− qTx

s.t. Gx � h

Ax = b

Second Order Cone Program

min
x

cTx

s.t. ‖Aix + bi‖2 � 0 ∀ i = 1, · · · ,m
A0x + b0 = 0

Semidefinite Program

min
x

cTx

s.t. x1F1 + · · ·+ xnFn + G � 0

Ax = b
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Converting Convex Problems

Why bother converting?

• An additional method to show that a problem is convex

• Specific solvers may be designed for certain problem classes i.e LP, QP

• Use of such solvers can result in must computation.
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Linear Programs

General Form Problem

Linear Program

min
x

cTx− d

s.t. Gx � h

Ax = b

Standard Form Problem

Linear Program

min
x

cTx− d

s.t. x � 0

Ax = b
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Example Problem From Text Book

Example Problem 1

Consider the problem

min
x
‖x‖1

s.t. ‖ATx− b‖∞ ≤ 1

Convert the problem to a standard form problem of your choice.

Is this a convex problem?
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Example Problem From Text Book

min
x
‖x‖1 =

N∑
i=1

|xi |

s.t. ‖ATx− b‖∞ ≤ 1

We will address the objective first. We can introduce the additional vector variable v
such that

min
x

N∑
i=1

vi = 1Tv

s.t. ‖ATx− b‖∞ ≤ 1

|xi | ≤ vi ∀ i = 1, · · · ,N
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Example Problem From Text Book

min
x

1Tv

s.t. ‖ATx− b‖∞ ≤ 1

|xi | ≤ vi ∀ i = 1, · · · ,N

We can then address the first constraint by noting its equivalence to

min
x

1Tv

s.t. |aT
i x− bi | ≤ 1 ∀ i = 1, · · · ,N
|xi | ≤ vi ∀ i = 1, · · · ,N
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Example Problem From Text Book

min
x

1Tv

s.t. |aT
i x− bi | ≤ 1 ∀ i = 1, · · · ,N
|xi | ≤ vi ∀ i = 1, · · · ,N

Finally we can use the fact that all our variables are real valued to rewrite the
inequality constraints as affine inequality constraints.

min
x

1Tv

s.t. − 1 ≤ aT
i x− bi ≤ 1 ∀ i = 1, · · · ,N

− vi ≤ xi ≤ vi ∀ i = 1, · · · ,N

The resulting problem is therefore an LP
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Example Problem From Text Book

Example Problem 2a)

Consider the problem

min
x

‖Ax− b‖1
cTx + d

s.t ‖x‖∞ ≤ 1

where d > ‖c‖1.

Show that the problem is quasi-convex.
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Example Problem From Text Book

min
x

‖Ax− b‖1
cTx + d

s.t ‖x‖∞ ≤ 1

A function is quasi-convex if and only if all its sublevel sets are convex i.e.

Sα =

{
x | ‖Ax− b‖1

cTx + d
≤ α

}
.

Note that this set can be rephrased as

Sα =
{

x | ‖Ax− b‖1 ≤ α
(

cTx + d
)}
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Example Problem From Text Book

Plotting the Sub-level Sets in Matlab

40 / 62



Example Problem From Text Book

The constraints

‖Ax− b‖1 ≤ α
(

cTx + d
)

can be rewritten by introducing the additional vector variable v

such that

1Tv ≤ α
(

cTx + d
)

−v ≤ Ax− b ≤ v

i.e. as a set of standard affine inequalities and thus can be interpreted as an
intersection of half-spaces.
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Example Problem From Text Book

Example 2b)

Show that the problem

min
x

‖Ax− b‖1
cTx + d

s.t ‖x‖∞ ≤ 1

is equivalent to

min
x
‖Ay − bt‖1

s.t ‖y‖∞ ≤ t

cTy + dt = 1

and ultimately is equivalent to a linear problem.
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Example Problem From Text Book

min
x

‖Ax− b‖1
cTx + d

s.t ‖x‖∞ ≤ 1

We begin by introducing the additional variable t such that

min
x

t‖Ax− b‖1

s.t ‖x‖∞ ≤ 1

cTx + d ≥ 1

t

Defining y = xt, it follows that

min
x
‖Ay − bt‖1

s.t ‖y‖∞ ≤ t

cTy + dt ≥ 1
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Example Problem From Text Book

min
x
‖Ay − bt‖1

s.t ‖y‖∞ ≤ t

cTy + dt ≥ 1

Similarly to Example 1, we introduce the vector variable v such that

min
x

1Tv

s.t ‖y‖∞ ≤ t

cTy + dt ≥ 1

|aiy − bi t| ≤ vi ∀ i = 1, · · · ,N
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Example Problem From Text Book

min
x

1Tv

s.t ‖y‖∞ ≤ t

cTy + dt ≥ 1

|aiy − bi t| ≤ vi ∀ i = 1, · · · ,N

Finally we rewrite the constraints such that

min
x

1Tv

s.t − t ≤ yi ≤ t ∀ i = 1, · · · ,N

cTy + dt ≥ 1

− vi ≤ aiy − bi t ≤ vi ∀ i = 1, · · · ,N

which is in the general form of a linear program
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Next Subsection

1 First Half
CVX: A Convex Optimisation Toolbox
Convex Sets
Convex Functions

2 Second Half
Converting Convex Problems
Lagrange Duality
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Lagrangian Duality

Why Use Lagrangian Duality?

• Provide a convex lower bound of optimal value of primal problem

• This bound is tight in the case of convex problems

• Dual form problem may be easier to solve than primal one.

• ...
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Example Problem From Text Book

Example Problem 1

Consider the general form LP

min
x

cTx− d

s.t. Gx � h

Ax = b

Find the its equivalent dual problem.
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Example Problem From Text Book

min
x

cTx− d

s.t. Gx � h

Ax = b

The Lagrangian of this LP is given by

L(x,ν,µ) = cTx− d + νT (Gx− h) + µT (Ax− b) , s.t. ν ≥ 0.

As this is an affine function of x the dual function is given by

g(ν,µ) = inf
x

(
cTx− d + νT (Gx− h) + µT (Ax− b)

)
=

{
−νTh− µTb− d if c + GTν + ATµ = 0

−∞ otherwise
.
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Example Problem From Text Book

The dual problem is therefore

min
x

− g(ν,µ)

s.t. ν ≥ 0

Therefore substituting the definition of g

min
x

νTh + µTb + d

s.t. ν ≥ 0

c + GTν + ATµ = 0

Which is interestingly another LP in standard form.
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Example Problem From Text Book

Example Problem 2

Consider the linearly constrained norm problem

min
x
‖x‖1

s.t. Cx = d

Find the its equivalent dual problem.
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Example Problem From Text Book

min
x
‖x‖1

s.t. Cx = d

The Lagrangian of this problem is given by

L(x,ν,µ) = ‖x‖1 − λT (Cx− d)

The dual function is therefore given by

g(λ) = inf
x

(
‖x‖1 − λT (Cx− d)

)
= − sup

x

(
λT (Cx− d)− ‖x‖1

)
= −f ∗(λ)
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Example Problem From Text Book

g(λ) = − sup
x

(
λT (Cx− d)− ‖x‖1

)

= − sup
x

(
(Cλ)T x− ‖x‖1

)
− λTd

=

{
−λTd if

(
CTλ

)T
x ≤ ‖x‖1

−∞ otherwise

Note that

uTx ≤ ‖x‖1 ⇐⇒ sup
{(

uTx
)
| ‖x‖1 ≤ 1

}
≤ 1
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Example Problem From Text Book

g(λ) =

{
−λTd if sup

{((
CTλ

)T
x
)
| ‖x‖1 ≤ 1

}
≤ 1

−∞ otherwise

From Example 2.25, sup
{(

uTx
)
| ‖x‖ ≤ 1

}
= ‖u‖∗ where ‖ • ‖∗ is the dual norm.

Therefore the dual functions is given by

g(λ) =

{
−λTd if ‖CTλ‖∞ ≤ 1

−∞ otherwise

The final dual problem is given by

min
λ

λTd

s.t. ‖CTλ‖∞ ≤ 1
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Example Problem: Channel Capacity Maximisation

Channel Capacity Maximisation

Given an N element transmit antenna
array, how can we distribute transmission
power to maximise the rate of data
transmission back to a target source?

In the case of an additive Gaussian
channel, this corresponds to

max
x

N∑
i=1

log2

(
1 +

xi
σi

)
s.t. xi ≥ 0 ∀ i = 1, · · · ,N

1Tx = 1

where σi is the bandwidth and noise
variance per antenna.
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Example Problem: Channel Capacity Maximisation

max
x

N∑
i=1

Bi log2

(
1 +

xi
σi

)
s.t. xi ≥ 0 ∀ i = 1, · · · ,N

1Tx = 1

Is the problem convex?

Objective
As the composition of a non-decreasing concave function and an affine function, the
objective is concave. Maximising a concave function is equivalent to minimising a
convex function.

Domain
The constraints are affine by nature therefore define a convex set.
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Channel Capacity Maximisation

Using log laws the objective can be rewritten as

N∑
i=1

log2

(
1 +

xi
σi

)
=

1

log(2)

N∑
i=1

(log (σi + xi )− log (σi ))

The problem is equivalent to

min
x

−
N∑
i=1

log (σi + xi )

s.t. xi ≥ 0 ∀ i = 1, · · · ,N

1Tx = 1

How can we go about solving this?
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Channel Capacity Maximisation

The Lagrangian of this problem is given by

L(x ,ν, µ) =
N∑
i=1

(− log (σi + xi ) + νixi − µxi )− µ

KKT Conditions

Primal Optimality − 1

σi + x∗i
− ν∗i + µ∗ = 0

Primal Feasibility 1Tx∗ = 1

x∗i ≥ 0 ∀ i = 1, · · · ,N
Dual Feasibility ν∗i ≥ 0 ∀ i = 1, · · · ,N

Complementary Slackness ν∗i x
∗
i = 0 ∀ i = 1, · · · ,N
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Channel Capacity Maximisation
Primal optimality implies that

ν∗i = µ∗ − 1

σi + x∗i

which, combined with dual feasibility implies

1

σi + x∗i
≤ µ∗

If µ∗ < 1
σi

this can only hold if x∗i > 0 in which case complementary slackness

means ν∗i = 0.

x∗i =

{
0 if µ∗ > 1

σi
1
µ∗ − σi otherwise

Finally, primal feasibility implies that∑
i∈C

(
1

µ∗
− σi

)
= 1

where C is the set of i ’s such that µ∗ > 1
σ

. Solve with bisection method to find µ∗

and thus x∗.
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Channel Capacity Maximisation

Alternatively Solve with CVX

cvx begin

variable x(n)

minimize sum(-log(sigma + x)))

subject to

ones(n,1)’ * x == 1

x >= 0

cvx end
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Channel Capacity Maximisation

Dual Variables with CVX

cvx begin

variable x(n)

dual variable mu

dual variable nu(n)

minimize sum(-log(sigma + x)))

subject to

mu: ones(n,1)’ * x == 1

nu: x >= 0

cvx end
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Channel Capacity Maximisation

Demo in Matlab
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