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What is CVX?

e CVX is a modeling system for convex optimisation problems
o Website: http://cvxr.com/cvx

cvx_begin
min f(x) variables x(n)
st. Ax=Db minimize (---) <*
g(x)<0
cvx_end
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Structure of Convex Problems
Mathematically!

min  fo(x)
st. fi(x)<0, i=1,---,m
hi(x)=0, j=1,---,p
In CVX
cvx_begin

variables x(n)

minimize (f0(x))

subject to
f(x) <=0
A*¥x-b==0
cvx_end

1fy and f; must be convex and h; must be affine.
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Return Values

Upon exit, CVX sets the variables
¢ X - solution variables(s) x*
e cvx_optval - the optimal value p*

 cvx_status - solver status (Solved, Unbounded, Infeasible,- - -)
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Basic Example - LP

Optimization Problem

In CVX

cvx_begin
variables x(n)
minimize (¢’ * x)
subject to
A*¥x-b==0
x>=0

cvx_end
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Basic Example - LP

Demo in Matlab
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Practical Example
Beam Pattern Optimization

Given an arbitrary N element antenna
// array, design a configuration for the

antennas such that

[— Matched Filter Response|

Array Gain (dB)
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Angel of Arrival (degrees)
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Practical Example

Beam Pattern Optimization
Given an arbitrary NV element antenna

/ array, design a configuration for the
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® The gain in a target direction is
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Practical Example

Beam Pattern Optimization
Given an arbitrary NV element antenna

/ array, design a configuration for the
antennas such that

® The gain in a target direction is
unity (target signal is preserved)

® The worst case side lobe gain of the
setup is minimized

[— Matched Filter Response|

Array Gain (dB)
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Angel of Arrival (degrees)
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Practical Example

Yo

[— Matched Filter Response|

Array Gain (dB)

0 50 100 150 200 250 300 350
Angel of Arrival (degrees)

Beam Pattern Optimization

Given an arbitrary NV element antenna
array, design a configuration for the
antennas such that

® The gain in a target direction is
unity (target signal is preserved)

® The worst case side lobe gain of the

setup is minimized

The task is to design a set of weights w to
meet these performance requirements.
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Beam Pattern Optimization
Problem Setup
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Beam Pattern Optimization
Problem Setup

® Discretise angles of arrival into M points i.e. § =1,2,---,360 and split into
main lobe and side lobe regions.
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Beam Pattern Optimization

Problem Setup

® Discretise angles of arrival into M points i.e. § =1,2,---,360 and split into
main lobe and side lobe regions.

® Given a weight vector w, the gain response of the array in direction i is given
by |al’w| where a; captures the natural response of the antennas (i.e. delay and
scaling).

5
TUDelft 10 / 62



Beam Pattern Optimization
Problem Setup

® Discretise angles of arrival into M points i.e. § =1,2,---,360 and split into
main lobe and side lobe regions.

® Given a weight vector w, the gain response of the array in direction i is given
by |al’w| where a; captures the natural response of the antennas (i.e. delay and
scaling).

e Stacking all angles in the side lobe region into a matrix A, the worst case side
lobe gain is given by ||Afw]|e

5
TUDelft 10 / 62



Beam Pattern Optimization
Problem Setup

® Discretise angles of arrival into M points i.e. § =1,2,---,360 and split into
main lobe and side lobe regions.

® Given a weight vector w, the gain response of the array in direction i is given
by |al’w| where a; captures the natural response of the antennas (i.e. delay and
scaling).

e Stacking all angles in the side lobe region into a matrix A, the worst case side
lobe gain is given by ||Afw]|e

5
TUDelft 10 / 62



Beam Pattern Optimization
Problem Setup

® Discretise angles of arrival into M points i.e. § =1,2,---,360 and split into
main lobe and side lobe regions.

® Given a weight vector w, the gain response of the array in direction i is given
by |al’w| where a; captures the natural response of the antennas (i.e. delay and
scaling).

e Stacking all angles in the side lobe region into a matrix A, the worst case side
lobe gain is given by ||Afw]|e

min ||A:{w||(XJ
w

H
s.t. aw=1
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Beam Pattern Optimization
Problem Setup

® Discretise angles of arrival into M points i.e. § =1,2,---,360 and split into
main lobe and side lobe regions.

® Given a weight vector w, the gain response of the array in direction i is given
by |al’w| where a; captures the natural response of the antennas (i.e. delay and
scaling).

e Stacking all angles in the side lobe region into a matrix A, the worst case side
lobe gain is given by ||Afw]|e

min || ALw]e cvx_begin
w
st alw=1 variable w(n) complex
minimize (norm(A_sl’ * w,Inf))
subject to
atar *w==1

cvx_end
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Optimized Beam Responses
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Beam Pattern Optimization

Demo in Matlab
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Proving Set Convexity

Methods
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Proving Set Convexity

Methods

e Definition - C is convex if and only if
VX1,X2 € C, 0 c {0,1}, Ox1 + (1 — 9)X2 cC.
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e Definition - C is convex if and only if
VX1,X2 € C, 0 c {0,1}, Ox1 + (1 — 9)X2 cC.
e Convexity Preserving Operations

e Intersection of convex sets
e Image of a convex set under an affine mapping

2
TUDelft 14 / 62



Proving Set Convexity

Methods

e Definition - C is convex if and only if
VX1,X2 € C, 0 c {0,1}, Ox1 + (1 — 9)X2 cC.

e Convexity Preserving Operations

o Intersection of convex sets

e Image of a convex set under an affine mapping
@ ..
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Example Problem: Quadratic Constraint Sets

Example 1: Quadratic Constraint Set

Show that the quadratic constraint set
C={x|x"Qx+q'x+c<0}

is convex if Q > 0.

%
TUDelft 15 / 62



Example Problem: Quadratic Constraint Sets

Example 1: Quadratic Constraint Set
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(Using the definition of a convex set is an unnecessarily hard way of showing this)
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Example Problem: Quadratic Constraint Sets

Example 1: Quadratic Constraint Set

Show that the quadratic constraint set
C={x|x"Qx+q"x+c<0}

is convex if Q > 0.

(Using the definition of a convex set is an unnecessarily hard way of showing this)
Three Alternatives

® Properties of convex sets

® Relationship with known convex sets

e Using properties of convex functions
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Example Problem: Quadratic Constraint Sets

Intersection With Arbitrary Line
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Example Problem: Quadratic Constraint Sets

Intersection With Arbitrary Line

Recall that a set is convex if and only if its intersection with an arbitrary line is
convex.
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Example Problem: Quadratic Constraint Sets

Intersection With Arbitrary Line

Recall that a set is convex if and only if its intersection with an arbitrary line is
convex.

Define the arbitrary line b + tv where t € R.
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Example Problem: Quadratic Constraint Sets

Intersection With Arbitrary Line

Recall that a set is convex if and only if its intersection with an arbitrary line is
convex.

Define the arbitrary line b + tv where t € R. By substitution

x Qx+q'x+c=(b+tv) Q(b+tv)+q (b+1tv)+c
=at’ 4+ ft+~

where a =v'Qv, 8=b"Qv+q vand y=b"Qb+q"b+c.
If « >0, C is a simple ellipsoid and is convex. For a > 0Vv, Q > 0.
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Example Problem: Quadratic Constraint Sets

Relationship With Euclidean Ball
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Example Problem: Quadratic Constraint Sets

Relationship With Euclidean Ball
Recall that the Euclidean ball given by

E={x| (x—x) P (x—x:) <1}

where P >~ 0.
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Example Problem: Quadratic Constraint Sets

Relationship With Euclidean Ball
Recall that the Euclidean ball given by

E={x| (x=—x)"P ' (x—x) <1}
where P > 0.

Expanding the quadratic form

E={x|x"P'x—2x/P x4+ x/P 'x. <1}
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Example Problem: Quadratic Constraint Sets

Relationship With Euclidean Ball
Recall that the Euclidean ball given by

E={x| (x=—x)"P ' (x—x) <1}
where P > 0.

Expanding the quadratic form
E={x| x P ix—2x/ P Ix +x] P x. < 1}
which can be rewritten in the form

C={x|x"Qx+q"x+c<0}.
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Example Problem: Quadratic Constraint Sets

Relationship With Euclidean Ball
Recall that the Euclidean ball given by

E={x| (x—x)"P ' (x—x) <1}
where P > 0.

Expanding the quadratic form
E={x|x"P'x—2x/P x4+ x/P 'x. <1}
which can be rewritten in the form
C={x|x"Qx+q"x+c<0}.

Thus convexity is proven by association with a known convex set.
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Example Problem: Quadratic Constraint Sets

Convexity of Quadratic Functions
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Example Problem: Quadratic Constraint Sets

Convexity of Quadratic Functions

If Q > 0 then we know that the quadratic function x” Qx is convex.
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Example Problem: Quadratic Constraint Sets

Convexity of Quadratic Functions
If Q > 0 then we know that the quadratic function x” Qx is convex.

Therefore, V x1,x2 € C, 6 € {0,1} it follows that

(0x1 + (1 — 0)x2)" Q (Ox1 + (1 — 0)x2) < Ox{ Qx1 + (1 — 0)x; Qxa
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Example Problem: Quadratic Constraint Sets

Convexity of Quadratic Functions
If Q > 0 then we know that the quadratic function x” Qx is convex.

Therefore, V x1,x2 € C, 6 € {0,1} it follows that

(0x1 + (1 — 0)x2)" Q (Ox1 + (1 — 0)x2) < Ox{ Qx1 + (1 — 0)x; Qxa

Therefore, we can show that
(Ox1 + (1 — 0)x2)" Q(Ox1 + (1 — 0)x2) + q (Ox1 + (1 — O)x2) + ¢
< 9(x1TQx1—|—qTx1—|—c) +(1-0) (x{sz—l—qsz%—c) <0

such that C is a convex set.
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Example Problem: Hyperbolic Constraint Sets

Example 2: Hyperbolic Sets
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Example Problem: Hyperbolic Constraint Sets

Example 2: Hyperbolic Sets

Show that the hyperbolic constraint set
CZ{XER1|X1X221}

is convex.
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Example Problem: Hyperbolic Constraint Sets

Example 2: Hyperbolic Sets

Show that the hyperbolic constraint set
CZ{XER1|X1X221}

is convex.

Hint: If a,b >0 and 6§ € [0,1], then a’b(~ < ga + (1 — 6)b.
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Example Problem: Quadratic Constraint Sets

Consider two arbitrary points x,, x, € C and a scalar 6 € [0, 1].
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Example Problem: Quadratic Constraint Sets

Consider two arbitrary points x,, x, € C and a scalar 6 € [0,1]. We want to show
that

(0xa,1 + (1 — 0)x6,1) (022 + (1 — O)xp0) > 1

such that 6x, + (1 — 0)x, € C.
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Example Problem: Quadratic Constraint Sets

Consider two arbitrary points x,, x, € C and a scalar 6 € [0,1]. We want to show
that

(0xa,1 + (1 — 0)x6,1) (022 + (1 — O)xp0) > 1

such that 6x, + (1 — 0)x, € C.
From the hint we know that
Oxaq1+ (1 — 0)xp1 > Xf,lxl(,,ll_e)

Oxa2 + (1 — )2 > x0oxf5?
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Example Problem: Quadratic Constraint Sets

Consider two arbitrary points x,, x, € C and a scalar 6 € [0,1]. We want to show
that

(0xa,1 + (1 — 0)x6,1)(0%a2 + (1 — O)xb2) > 1
such that 6x, + (1 — 0)x, € C.

From the hint we know that

0xa1+ (1 —0)xp1 > x; 1xl(,1 o)

0Xa,2 + (1 - )Xb 2 > X3 2Xt(,12 9

such that

(0xa,1 + (1 — 0)x5,1)(0xa2 + (1 — O)xp2) > X, lxl(,ll e)xfzxt(,l o)
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Example Problem: Quadratic Constraint Sets

(8o + (1= 0)x61)(Bxa2 + (1 = 0)x62) = xbaxiy “xbaxly ”
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Example Problem: Quadratic Constraint Sets

(Oxa1 + (1 = O)x6,1) (0xa2 + (1 — O)x62) > x&1xsy Pxox(ly ?
Rearranging and applying the definition of C we get

(0xa,1 + (1 — 0)x5,1) (02,2 + (1 — O)xp2) > (Xa,1Xa,2)9(Xb,1Xb,2)(1_9)
> 191079
=1
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Example Problem: Quadratic Constraint Sets

(Oxa1 + (1 = O)x6,1) (0xa2 + (1 — O)x62) > x&1xsy Pxox(ly ?
Rearranging and applying the definition of C we get

(0xa,1 + (1 — 0)x5,1) (02,2 + (1 — O)xp2) > (Xa,lxa,Z)e(Xb,lxb,Z)(l_e)
> 191079
=1

Therefore
(Oxa,1 + (1 = 0)x5,1)(0%a0 + (1 = O)xp2) > 1

for all x5, x, € C and a 0 € [0, 1].
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Example Problem: Quadratic Constraint Sets

(Oxa1 + (1 = O)x6,1) (0xa2 + (1 — O)x62) > x&1xsy Pxox(ly ?
Rearranging and applying the definition of C we get

(0xa,1 + (1 — 0)x5,1) (02,2 + (1 — O)xp2) > (Xa,lxa,Z)e(Xb,lxb,Z)(l_e)
> 191079
=1

Therefore
(Oxa,1 + (1 = 0)x5,1)(0%a0 + (1 = O)xp2) > 1

for all xa, x, € C and a 0 € [0,1]. In this way, C is a convex set.
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Showing That a Function is Convex

Methods
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Showing That a Function is Convex

Methods

® Definition - f is convex if and only if
V x1,x2 € dom(f), 8 € {0,1}, f(6x1 + (1 —0)x2) < 0f(x1) + (1 — 0)f(x2).
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Showing That a Function is Convex

Methods

® Definition - f is convex if and only if
V x1,x2 € dom(f), 8 € {0,1}, f(6x1 + (1 —0)x2) < 0f(x1) + (1 — 0)f(x2).

e 1st order condition - V x1, xo € dom(f), f(x1) > f(x2) + V()T (x1 — x2)
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® Definition - f is convex if and only if
V x1,x2 € dom(f), 8 € {0,1}, f(6x1 + (1 —0)x2) < 0f(x1) + (1 — 0)f(x2).

e 1st order condition - V x1, xo € dom(f), f(x1) > f(x2) + V()T (x1 — x2)
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Showing That a Function is Convex

Methods

® Definition - f is convex if and only if
V x1,x2 € dom(f), 8 € {0,1}, f(6x1 + (1 —0)x2) < 0f(x1) + (1 — 0)f(x2).

e 1st order condition - V x1, xo € dom(f), f(x1) > f(x2) + V()T (x1 — x2)
 2nd order condition - V¥ x; € dom(f), Vf(xi) = 0

e Composition rules - f(x) = ho g(x) is convex if either h is convex, h' is
non-decreasing and g is convex or h is convex, h’ is non-increasing and g is
concave.
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Basic Example

Example Problem 1

Show that the function
f(x,t) = —log(t” — [Ix[|7)

is convex if where p > 2 and dom(f) = {(x, t)|t > ||x||»}.
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Basic Example

Example Problem 1

Show that the function
f(x,t) = —log(t” — [Ix[|7)

is convex if where p > 2 and dom(f) = {(x, t)|t > ||x||»}.

(Using the definition of a convex function is unnecessarily hard)
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Basic Example

Example Problem 1
Show that the function
f(x, t) = —log(t” — [Ix[|;)
is convex if where p > 2 and dom(f) = {(x, t)|t > ||x||»}.
(Using the definition of a convex function is unnecessarily hard)

Alternatively we can use convexity preserving composition rules.
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Basic Example

Example Problem 1

Begin by noting that

F(x,t) = —log(t” — ||x||7)
R
= —(p—1)log(t) — log (t _ Mf) .
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Basic Example

Example Problem 1

Begin by noting that

F(x,t) = —log(t” — ||x||7)
R
= —(p—1)log(t) — log <t _ Mf) .

The left hand term is a convex function.
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Basic Example

Example Problem 1

Begin by noting that

f(x,t) = —log(t” — [|x[[7)
-1 lIx15
= —log(t"™') — log (t - tp_f

— —(p—1)log(t) — log <t - ”X”5> .

tp—1

The left hand term is a convex function. The right hand term is the composition of a
convex, non-increasing function and

X112

t— 12
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Basic Example

Example Problem 1

Begin by noting that

f(x,t) = —log(t” — [|x[[7)
-1 lIx15
= —log(t"™') — log (t - tp_f

— —(p—1)log(t) — log <t - ”X”5> .

tp—1

The left hand term is a convex function. The right hand term is the composition of a
convex, non-increasing function and

X P
RN
tP—1 =
P
To show convexity this term must be concave, i.e. we want to show that !:!‘1’ is

convex.
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Basic Example

Example Problem 1
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Basic Example

Example Problem 1

We can show convexity by noting a relationship with the known convex function Z i.e

the perspective function.
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Basic Example

z

Example Problem 1
We can show convexity by noting a relationship with the known convex function Z i.e
the perspective function.

The perspective function is linear in z such that

X112
S

is convex
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Basic Example

Example Problem 1

We can show convexity by noting a relationship with the known convex function Z i.e
the perspective function.

The perspective function is linear in z such that
P
X115
s
is convex

This function is convex in s > 0 and has a non-decreasing derivative such that

1113

tp—1

is convex for p > 2.

Delft 26 / 62



Basic Example

Example Problem 2
Show that the function
Fxa, %) = —x@x ™)

is convex if where a € [0,1] and xi,x € R4
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Basic Example

Example Problem 2
Show that the function

f(xi, %) = —xlaxz(l_a)

is convex if where a € [0,1] and xi,x € R4

Chosen approach: 2nd order condition for convexity.
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Basic Example

f(x1,x) = —x{)‘xz(l_a)
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Basic Example

f(x1,x) = —xlaxz(l_a)

Due to the smoothness of this function we will use the second order convexity
condition.

5
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Basic Example

f(xi, %) = —xq X(l )

Due to the smoothness of this function we will use the second order convexity
condition.

ax®! (1 )
Vi, x) == [(1 - oz)X1 X5 }
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Basic Example

f(xi, %) = —xq X(l )

Due to the smoothness of this function we will use the second order convexity
condition.

ax®! (1 )
Vi, x) == [(1 - oz)X1 X5 }

ala — 1)x 2 a(l — a)x® 1x{7)
VF(x, %)’ = ( P a1 2( @) ( A o f-a-1)
a(l—a)xy " x, (1 - a)(—a)x{"x
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Basic Example

f(xi, %) = —xq X(l )

Due to the smoothness of this function we will use the second order convexity
condition.

ax®! (1 )
Vi, x) == [(1 - oz)X1 X5 }

ala — 1)x 2 ol — a)x; “1y{=)
Vf(Xth)z:— ( ) a— 12( ) ( ) (2a 1)
a(l—a)xy " x, (1 - a)(—a)x{"x

1 -1
l1—« x2 X1x2
=a(l — a)x'% |:ﬁ 1 :|
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Basic Example
f(Xl)X2) = —X1 X(1 )

Due to the smoothness of this function we will use the second order convexity
condition.

ax®—1 (1 @)
Viba,e) == |:(1 _1 O‘)Xl Xy :|

_ a—2 (1-a) - a—1_(—a)
vf(X17X2)2 _ |:Oé(C¥ 1) X a(l a)xl X :|

0((1 — 04) X1 1X2(—a) (1 _ a)(_a)xlaxé—a—l)

X1X2 3

oo 3] [3] =

X2 X2

<3
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General Form Problems

General Form Problem
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General Form Problems

General Form Problem

Linear Program
min ¢ x—d
st. Gx=<h
Ax=0b
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General Form Problems

General Form Problem

Linear Program
min ¢ x—d
st. Gx=<h
Ax=0b

Quadratic Program
min xTQx — qTx
st. Gx=h
Ax=0b
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General Form Problems

General Form Problem

Linear Program Second Order Cone Program
. T
min ¢ x—d min ¢ x
st. Gx=<h s.t. ||A,‘X+bi||2j0Vi:]_,...’m
Ax— b Aox + bo = 0

Quadratic Program
min  x’ Qx — qTx
st. Gx=<h
Ax=0b
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General Form Problems

General Form Problem
Linear Program
mxin c'x—d
st. Gx=<h
Ax=b

Quadratic Program
min xTQx — qTx
st. Gx=h
Ax=0b

Second Order Cone Program
min ¢’ x
s.t. ||A,‘X+b,'||2 <0Vi=1,---,m
Agx +bo =0
Semidefinite Program
min  ¢'x
st. xiFl+- -+ x,Fr+G =<0
Ax=Db

5
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Converting Convex Problems

Why bother converting?

® An additional method to show that a problem is convex
® Specific solvers may be designed for certain problem classes i.e LP, QP

® Use of such solvers can result in must computation.

z
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Linear Programs

General Form Problem Standard Form Problem
Linear Program Linear Program
mxin c’'x—d mxin c’x—d
st. Gx=<h st. x>0
Ax=Db Ax=Db

5
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Example Problem From Text Book

Example Problem 1

Consider the problem
min ||x||1
X
st. |[ATx—blw <1

Convert the problem to a standard form problem of your choice.

5
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Example Problem From Text Book

Example Problem 1

Consider the problem
min ||x||1
X
st. |[ATx—blw <1

Convert the problem to a standard form problem of your choice.

Is this a convex problem?

5
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Example Problem From Text Book

min - Ix|ls = Z Ixil

st. JATx—blle <1
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Example Problem From Text Book

N
min - Ix|ls = > Il
i=1
.
st. [|[A'x—blo <1

We will address the objective first.
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Example Problem From Text Book

N

min [x = 3" |x|
X

i=1
st. JATx—blle <1

We will address the objective first. We can introduce the additional vector variable v
such that

N
. T
min E vi=1"v

X
i=1

st. [[ATXx—b|je <1
|X;|§V;Vi:1,~~~,N

2
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Example Problem From Text Book

min 17v
X

st. ||ATx—b|ew <1
|X;|§V,‘Vl':1,---,N
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Example Problem From Text Book

min 17v
X

st. ||ATx—b|ew <1
|X;|§V,‘Vl':1,---,N
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Example Problem From Text Book

. T
min 1'v
X

st. ||ATx—b|ew <1
|X,'|§V;Vl':1,---,N

We can then address the first constraint by noting its equivalence to

. T
min 1'v
X

st. la/x—b|<1Vi=1,--- N
bl <vi¥i=1 N

3
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Example Problem From Text Book

min 17v
X

st. Jaix—b|<1Vi=1,-- N
xiji <viVi=1,---,N
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Example Problem From Text Book

min 17v
X
st. |a/x—b|<1Vi=1,--- N
|X,'| <vyVi=1,--- /N
Finally we can use the fact that all our variables are real valued to rewrite the
inequality constraints as affine inequality constraints.
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Example Problem From Text Book

min 17v
X
st. |a/x—b|<1Vi=1,--- N
|X,'| <vyVi=1,--- /N
Finally we can use the fact that all our variables are real valued to rewrite the
inequality constraints as affine inequality constraints.

min 17v
X

st. —1<a/x—b<1Vi=1,---,N
—vi<xi<viVi=1,---,N
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Example Problem From Text Book

min 17v
X
st. |a/x—b|<1Vi=1,--- N
|X,'| <vyVi=1,--- /N
Finally we can use the fact that all our variables are real valued to rewrite the
inequality constraints as affine inequality constraints.

min 17v
st. —1<a/x—b<1Vi=1--- N
—vi<x<vVi=1,--- N

The resulting problem is therefore an LP

5
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Example Problem From Text Book

min 17v

X

s.t. —1§a,-Tx—b,-§1Vi=17...,N
—ViSXISViVI'=1,~~,N

3
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Example Problem From Text Book

min 17v

X

st. —1<a/x—b<1Vi=1,---,N
_ViSXISViVi=1,~-~,N

Writing this in the general linear program form

min 17v
[a] 07]
1 by T
ay 07 :
T T 1—b
—a; 0 X N
s.t. ) |:V:| + 11 by >0
: —1— by
—aj 07 0
| | . 0 |
L I _I-

z
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Example Problem From Text Book

Example Problem 2a)

Consider the problem

[[Ax — bl|x
x c’x+d
st |Ix]lee <1

where d > |[[c||1.

5
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Example Problem From Text Book

Example Problem 2a)
Consider the problem

[[Ax — bl|x
x c’x+d
st |Ix]lee <1

where d > [c||1.

Show that the problem is quasi-convex.

5
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Example Problem From Text Book

[Ax —b][s
x c’x+d
st |Ix]|leo <1

5 y
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Example Problem From Text Book

min  [AX— bl
x CTX+ d
st [xlleo < 1

A function is quasi-convex if and only if all its sublevel sets are convex
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Example Problem From Text Book

min  [AX— bl
x CTX+ d
st [xlleo < 1

A function is quasi-convex if and only if all its sublevel sets are convex i.e.

x| [[Ax — bl _
c'x+d — ’
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Example Problem From Text Book

min  [AX— bl
x CTX+ d
st [xlleo < 1

A function is quasi-convex if and only if all its sublevel sets are convex i.e.

x| [[Ax — bl _
c'x+d — ’

Note that this set can be rephrased as

So = {x| |Ax — bl < a (ch+d)}

5
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Example Problem From Text Book

Plotting the Sub-level Sets in Matlab

5
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Example Problem From Text Book

The constraints
[Ax — bl < & (ch n d)

can be rewritten by introducing the additional vector variable v

5
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Example Problem From Text Book

The constraints
[Ax — bl < & (ch n d)
can be rewritten by introducing the additional vector variable v such that
1'v<a (ch+ d)
—-v<Ax—b<v
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Example Problem From Text Book

The constraints
[Ax — bl < & (ch n d)
can be rewritten by introducing the additional vector variable v such that
1'v<a (ch+ d)
—-v<Ax—b<v

i.e. as a set of standard affine inequalities and thus can be interpreted as an
intersection of half-spaces.

2
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Example Problem From Text Book

Example 2b)
Show that the problem

[Ax —b][s
x c’x+d
st |Ix]|leo <1

is equivalent to
min  ||Ay — bt||;
X
st [yl <t
cTy +dt=1

and ultimately is equivalent to a linear problem.

<3
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Example Problem From Text Book

min  IAx = blx
x c’x+d
st |Ix]jee <1

3 /
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Example Problem From Text Book

min  IAx = blx
x c’x+d
st |Ix]jee <1

We begin by introducing the additional variable t such that
min  t||Ax — b|:
st [x]jee <1

1
ch—|—d2 :

2
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Example Problem From Text Book

min  IAx = blx
x c’x+d
st |Ix]jee <1

We begin by introducing the additional variable t such that
mxin t||Ax — bl|1
st [Ixfoe <1
cx+d > %

Defining y = xt, it follows that

min  ||Ay — bt||;

st [yl <t
cTy +dt>1

2
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Example Problem From Text Book

min  ||Ay — bt||;
X
st lylle <t
cy+dt>1
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Example Problem From Text Book

min  ||Ay — bt||;
X
st lylle <t
cy+dt>1
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Example Problem From Text Book

min ||Ay — bt||;
X
st lylle <t
cy+dt>1
Similarly to Example 1, we introduce the vector variable v such that
min 17v

X
st lylle <t

cTy—i—dtZl
la;y —bit| <viVi=1,---,N

5
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Example Problem From Text Book

min 17v
X
st lylle <t
c'y+dt>1

|a,-y—b,-t|§v,-Vi:1,--~ N
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Example Problem From Text Book

min 17v
x
st lylle <t
c'y+dt>1
la;y —bit| <viVi=1,--- N
Finally we rewrite the constraints such that

min 17v

st —t<Ly;<tVvi=1,---,N
cTy—l—dtZl
—v,-§a;y—b,~t§v,-Vi:1,~~~,N

which is in the general form of a linear program

2
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Next Subsection

@® Second Half

Lagrange Duality

3 /
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Lagrangian Duality

Why Use Lagrangian Duality?

5
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Lagrangian Duality

Why Use Lagrangian Duality?

® Provide a convex lower bound of optimal value of primal problem
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Lagrangian Duality

Why Use Lagrangian Duality?

® Provide a convex lower bound of optimal value of primal problem

® This bound is tight in the case of convex problems
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Lagrangian Duality

Why Use Lagrangian Duality?

® Provide a convex lower bound of optimal value of primal problem
® This bound is tight in the case of convex problems

® Dual form problem may be easier to solve than primal one.
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Lagrangian Duality

Why Use Lagrangian Duality?

® Provide a convex lower bound of optimal value of primal problem

This bound is tight in the case of convex problems

Dual form problem may be easier to solve than primal one.

2
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Example Problem From Text Book

Example Problem 1

Consider the general form LP
min ¢ x—d

st. Gx=<h
Ax=Db

2
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Example Problem From Text Book

Example Problem 1

Consider the general form LP
min ¢ x—d

st. Gx=<h
Ax=Db

Find the its equivalent dual problem.
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Example Problem From Text Book

min ¢ x—d
st. Gx=<h
Ax=Db
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Example Problem From Text Book

min ¢c'x—d
st. Gx=<h
Ax=Db

The Lagrangian of this LP is given by
Lx,v,u)=c x—d+v' (Gx—h)+p’ (Ax—b), st.v > 0.

2
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Example Problem From Text Book

min ¢c'x—d
st. Gx=<h
Ax=Db

The Lagrangian of this LP is given by
Lx,v,u)=c x—d+v' (Gx—h)+p’ (Ax—b), st.v > 0.

As this is an affine function of x the dual function is given by
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Example Problem From Text Book

min ¢c'x—d
st. Gx=<h
Ax=Db

The Lagrangian of this LP is given by
Lx,v,p)=c x—d+v' (Gx—h)+pu’ (Ax—b), st.v > 0.
As this is an affine function of x the dual function is given by

gv,pn) = ir;f (ch —d+v  (Gx—h)+pu’ (Ax— b))
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Example Problem From Text Book

min ¢c'x—d
st. Gx=<h
Ax=Db

The Lagrangian of this LP is given by
Lx,v,p)=c x—d+v' (Gx—h)+pu’ (Ax—b), st.v > 0.
As this is an affine function of x the dual function is given by

gv,pn) = ir;f (ch —d+v  (Gx—h)+pu’ (Ax— b))

—v'h—pu'b—d ifc+G v+ATu=0
B otherwise ’

2
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Example Problem From Text Book

The dual problem is therefore

min  —g(v,pn)
X
st. v>0

5 y
TUDelft 50 / 62



Example Problem From Text Book

The dual problem is therefore
min  — g(v, p)
st. v>0
Therefore substituting the definition of g
mxin v'h+ uTb +d
st. v>0
c+G'v+ ATp, =0

5
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Example Problem From Text Book

The dual problem is therefore
min  — g(v, p)
st. v>0
Therefore substituting the definition of g
mxin v'h+ uTb +d
st. v>0
c+G'v+ ATp, =0

Which is interestingly another LP in standard form.

5
TUDelft 50 / 62



Example Problem From Text Book

Example Problem 2

Consider the linearly constrained norm problem
min  [|x]]1
X

st. Cx=d

3
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Example Problem From Text Book

Example Problem 2

Consider the linearly constrained norm problem
min  [|x||x
X
st. Cx=d

Find the its equivalent dual problem.

3
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Example Problem From Text Book

min x|
X

st. Cx=d

P
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Example Problem From Text Book

min - Ix][x
st. Cx=d
The Lagrangian of this problem is given by
L(x,v, p) = [Ix|1 = AT (Cx — d)

5
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Example Problem From Text Book

min x|
st. Cx=d
The Lagrangian of this problem is given by
L(x,v, p) = [Ix|1 = AT (Cx — d)
The dual function is therefore given by
g(A) = inf (|lx] — AT (Cx — d))
= —sup (A7 (Cx —d) — [}

= ()

z
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Example Problem From Text Book

g(A) = —sup (AT (Cx— d) — x|

5 y
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Example Problem From Text Book

g(A) = —sup (AT (Cx— d) — x|

= —sup ((CA)T x — ||x||1) ~2\d
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Example Problem From Text Book

g(A) = —sup (AT (Cx— d) — x|

= —sup ((CA)TX - ||x||1) ~2\d

—00 otherwise

3 {—)\Td if (CTA)" x < x|l
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Example Problem From Text Book

g(A) = —sup (AT (Cx— d) — x|

= —sup ((C)\)Tx - ||x||1) - A'd

—00 otherwise

3 {—)\Td if (CTA)" x < x|l

Note that

u'x < |x]; = sup{(uTx) [Ix]l: < 1} <1

5
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Example Problem From Text Book

£ = {—ATd it sup { ((€73) %) | Ixh <1} <1

—00 otherwise
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Example Problem From Text Book

£ = {—ATd it sup { ((€73) %) | Ixh <1} <1

—00 otherwise

From Example 2.25, sup {(u”x) | [|x|| < 1} = |Ju||. where || || is the dual norm.
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Example Problem From Text Book

£ = {—ATd it sup { ((€73) %) | Ixh <1} <1

—00 otherwise

From Example 2.25, sup {(u”x) | [|x|| < 1} = |Ju||. where || || is the dual norm.

Therefore the dual functions is given by

—00 otherwise

“ATd i |ICTA|ee <1
) = { 1€ Al <
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Example Problem From Text Book

£ = {—ATd it sup { ((€73) %) | Ixh <1} <1

—00 otherwise

From Example 2.25, sup {(u”x) | [|x|| < 1} = |Ju||. where || || is the dual norm.

Therefore the dual functions is given by

“ATd i |ICTA|ee <1
) = { ISl

—00 otherwise
The final dual problem is given by

min A'd
bY

st. [CTA|w <1

2
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Example Problem: Channel Capacity Maximisation

Channel Capacity Maximisation

Given an N element transmit antenna
/ array, how can we distribute transmission
power to maximise the rate of data

transmission back to a target source?

5
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Example Problem: Channel Capacity Maximisation

Channel Capacity Maximisation

Given an N element transmit antenna
/ // array, how can we distribute transmission

power to maximise the rate of data

transmission back to a target source?

In the case of an additive Gaussian
channel, this corresponds to

N
Xj
I 1+ —
e S (143)
st. x;>0vVi=1,--- /N
1'x=1

where o; is the bandwidth and noise
variance per antenna.

z
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Example Problem: Channel Capacity Maximisation

N
Xi
max ;Bi log, <1+;i)
st. x;>0vVi=1,--- N
17x=1

5 y
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Example Problem: Channel Capacity Maximisation

N
Xi
max ;Bi log, <1+;i)
st. x;>0vVi=1,--- N
17x=1

Is the problem convex?
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Example Problem: Channel Capacity Maximisation

N X
mf\x ; Bilog, (1 + ;,,)
st. x>0Vi=1,.--- N
17x=1
Is the problem convex?

Objective

As the composition of a non-decreasing concave function and an affine function, the
objective is concave. Maximising a concave function is equivalent to minimising a
convex function.
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Example Problem: Channel Capacity Maximisation

N X
mf\x ; Bilog, (1 + ;’l)
st. x>0Vi=1,.--- N
17x=1
Is the problem convex?

Objective

As the composition of a non-decreasing concave function and an affine function, the
objective is concave. Maximising a concave function is equivalent to minimising a
convex function.

Domain
The constraints are affine by nature therefore define a convex set.

5
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Channel Capacity Maximisation

Using log laws the objective can be rewritten as

Zlogz (1 + 2) Iog(2 Z(Iog oi + xi) — log (oi))

3
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Channel Capacity Maximisation

Using log laws the objective can be rewritten as

N

Z o8 (14 ) = fogizy 2o (o8 01 +x) o8 ()

The problem is equivalent to

N
min  — Z log (i + xi)
i=1

st. x;>0vVi=1,--- /N
1'x=1
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Channel Capacity Maximisation

Using log laws the objective can be rewritten as

N

Z o8 (14 ) = fogizy 2o (o8 01 +x) o8 ()

The problem is equivalent to

N
min  — Z log (i + xi)
i=1

st. x;>0vVi=1,--- /N
1'x=1
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Channel Capacity Maximisation

Using log laws the objective can be rewritten as

Zlogz (1 + g:) Iog(2 Z(Iog oi + xi) — log (oi))

The problem is equivalent to

X

N
min  — Z log (i + xi)
i=1

st. x;>0vVi=1,--- /N
1'x=1

How can we go about solving this?

z
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Channel Capacity Maximisation

The Lagrangian of this problem is given by

N
L(x,v,p) = Z (—log (07 4 xi) + vixi — px;) — p

i=1

5 y
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Channel Capacity Maximisation

The Lagrangian of this problem is given by

N
L(x,v,p) = Z (—log (oi + xi) + vixi — pxi) — p

i=1

KKT Conditions

5
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Channel Capacity Maximisation

The Lagrangian of this problem is given by

N
L(x,v,p) = Z (—log (oi + xi) + vixi — pxi) — p

i=1
KKT Conditions

Primal Optimality —— —vi4+u =0

o+ X;*
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Channel Capacity Maximisation

The Lagrangian of this problem is given by

N
L(x,v,p) = Z (—log (oi + xi) + vixi — pxi) — p

i=1

KKT Conditions

Primal Optimality —— —vi4+u =0

o+ X;*
Primal Feasibility 17x* =1
X >0Vi=1,-.- N
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Channel Capacity Maximisation

The Lagrangian of this problem is given by

N
L(x,v,p) = Z (—log (oi + xi) + vixi — pxi) — p

i=1

KKT Conditions

Primal Optimality —— —vi4+u =0

o+ X;*
Primal Feasibility 17x* =1
X >0Vi=1,-.- N

Dual Feasibility v/ >0Vi=1,--- /N
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Channel Capacity Maximisation

The Lagrangian of this problem is given by

N

L(x,v,p) = Z (—log (oi + xi) + vixi — pxi) — p

i=1

KKT Conditions

Primal Optimality —

o+ X mvita =0
Primal Feasibility 1"x* =1

X >0vVi=1,---,N

Dual Feasibility v/ >0Vi=1,--- /N

Complementary Slackness v/x =0Vi=1,--- ,N

5
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Channel Capacity Maximisation
Primal optimality implies that
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Channel Capacity Maximisation
Primal optimality implies that

* * 1
*
oi + X

which, combined with dual feasibility implies

- <y
oi + X =K
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Channel Capacity Maximisation
Primal optimality implies that

* * 1
*
oi + X

which, combined with dual feasibility implies

<y
oi + X =H

If u* < Ji this can only hold if x; > 0 in which case complementary slackness
means v; = 0.
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Channel Capacity Maximisation
Primal optimality implies that

* * 1
*
oi + X

which, combined with dual feasibility implies

<y
oi + X =H

If w* < Ji this can only hold if x; > 0 in which case complementary slackness
means v; = 0.

Xi = 1 .
— — 0 otherwise
N

. {o if gt > L
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Channel Capacity Maximisation
Primal optimality implies that

* * 1
*

oi + X

which, combined with dual feasibility implies

- <y
oi + X =K

If w* < Ji this can only hold if x; > 0 in which case complementary slackness
means v; = 0.

Xi = 1 .
— — 0 otherwise
N

. {o if gt > L

Finally, primal feasibility implies that

where C is the set of i's such that p* > L.
o
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Channel Capacity Maximisation

Primal optimality implies that

If w* < Ji this can only hold if x; > 0 in which case complementary slackness
means v; = 0.

Xi = 1 .
— — 0 otherwise
N

. {o if gt > L
Finally, primal feasibility implies that

ieC

where C is the set of i's such that pu* > % Solve with bisection method to find p*
and thus x*.

5
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Channel Capacity Maximisation

Alternatively Solve with CVX

T

variable x(n)
minimize sum(-log(sigma + x)))
subject to

ones(n,1)’ *x==1

x>=0

cvx_end

5 y
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Channel Capacity Maximisation

Dual Variables with CVX

O

variable x(n)
dual variable mu
dual variable nu(n)

minimize sum(-log(sigma + x)))

subject to
mu: ones(n,1) *x ==1
nu: x >=0

cvx_end
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Channel Capacity Maximisation

Demo in Matlab

3 /
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