Background: Linear Algebra

EE4C03 Statistical Digital Signal Processing and Modeling

Delft University of Technology, The Netherlands

Outline

- Vectors and matrices
- Linear independence, vector spaces, and basis vectors
- Linear equations
- Eigenvalue decomposition
- Optimization theory

Vectors

- An N-dimensional vector is assumed to be a column vector:

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right]
$$

- Complex conjugate (Hermitian) transpose

$$
x^{H}=\left(x^{\top}\right)^{*}=\left(x^{*}\right)^{\top}=\left[\begin{array}{lll}
x_{1}^{*} & x_{2}^{*} & \ldots, x_{N}^{*}
\end{array}\right]
$$

- For a discrete-time signal $x(n)$, we use the following vectors

$$
\boldsymbol{x}=\left[\begin{array}{c}
x(0) \\
x(1) \\
\vdots \\
x(N-1)
\end{array}\right]
$$

$$
x(n)=\left[\begin{array}{c}
x(n) \\
x(n-1) \\
\vdots \\
x(n-N+1)
\end{array}\right]
$$

Vectors

- Vector norms:

$$
\begin{aligned}
& \text { Euclidean (2-norm): }\|\boldsymbol{x}\|=\|\boldsymbol{x}\|_{2}=\left(\sum_{i=1}^{N}\left|x_{i}\right|^{2}\right)^{1 / 2}=\left(\sum_{i=1}^{N} x_{i}^{*} x_{i}\right)^{1 / 2}=\left(\boldsymbol{x}^{\mathrm{H}} \boldsymbol{x}\right)^{1 / 2} \\
& \text { 1-norm: }\|\boldsymbol{x}\|_{1}=\sum_{i=1}^{N}\left|x_{i}\right| \\
& \infty \text {-norm: }\|\boldsymbol{x}\|_{\infty}=\max _{i}\left|x_{i}\right|
\end{aligned}
$$

- The inner product is defined as

$$
\langle\boldsymbol{a}, \boldsymbol{b}\rangle=\boldsymbol{a}^{H} \boldsymbol{b}=\sum_{i=1}^{N} a_{i}^{*} b_{i}
$$

- Two vectors are orthogonal if $\langle\boldsymbol{b}, \boldsymbol{b}\rangle=0$; if they are unit norm they are orthonormal
- Properties of inner product:

$$
\begin{aligned}
|\langle\boldsymbol{a}, \boldsymbol{b}\rangle| \leq\|\boldsymbol{a}\|\|\boldsymbol{b}\|(\text { Cauchy-Schwarz }) \\
2|\langle\boldsymbol{a}, \boldsymbol{b}\rangle| \leq\|\boldsymbol{a}\|^{2}+\|\boldsymbol{b}\|^{2}
\end{aligned}
$$

Linear independence, vector spaces, and basis vectors

- A collection of N vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{N}$ is called linearly independent if

$$
\alpha_{1} \boldsymbol{v}_{1}+\alpha_{2} \boldsymbol{v}_{2}+\cdots+\alpha_{N} \boldsymbol{v}_{N}=0 \quad \Leftrightarrow \quad \alpha_{1}=\alpha_{2}=\cdots=\alpha_{N}=0
$$

- The space \mathcal{V} spanned by a collection of vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{N}$ is called a vector space

$$
\mathcal{V}=\left\{\alpha_{1} \boldsymbol{v}_{1}+\alpha_{2} \boldsymbol{v}_{2}+\cdots+\alpha_{N} \boldsymbol{x}_{N} \mid \alpha_{i} \in C, \forall i\right\}
$$

- If the vectors are linearly independent they are called a basis for that vector space
- The number of basis vectors is called the dimension of the vector space
- If the vectors are orthogonal \rightarrow orthogonal basis
- If the vectors are orthonormal \rightarrow orthonormal basis

Matrices

- An $n \times m$ matrix has n rows and m columns:

$$
\boldsymbol{A}=\left[a_{i j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right]
$$

- Complex conjugate (Hermitian) transpose

$$
\boldsymbol{A}^{H}=\left(\boldsymbol{A}^{\top}\right)^{*}=\left(\boldsymbol{A}^{*}\right)^{\top}
$$

- Hermitian matrix

$$
\boldsymbol{A}=\boldsymbol{A}^{\mathrm{H}}
$$

Matrix inverse

- The rank of \boldsymbol{A}, denoted $\rho(\boldsymbol{A})$, is the number of independent columns or rows of \boldsymbol{A}

$$
\begin{array}{ll}
\text { Prototype rank-1 matrix: } & \boldsymbol{A}=\boldsymbol{a} \boldsymbol{b}^{\mathrm{H}} \\
\text { Prototype rank-2 matrix: } & \boldsymbol{A}=\boldsymbol{a} \boldsymbol{b}^{\mathrm{H}}+\boldsymbol{c} \boldsymbol{d}^{\mathrm{H}}
\end{array}
$$

- The ranks of $\boldsymbol{A}, \boldsymbol{A}^{\mathrm{H}}, \boldsymbol{A} \boldsymbol{A}^{\mathrm{H}}$, and $\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}$ are the same

$$
\rho(\boldsymbol{A})=\rho\left(\boldsymbol{A}^{\mathrm{H}}\right)=\rho\left(\boldsymbol{A} \boldsymbol{A}^{\mathrm{H}}\right)=\rho\left(\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}\right)
$$

- If \boldsymbol{A} is square and full $\operatorname{rank}(\rho(\boldsymbol{A})=n)$, there is a unique inverse \boldsymbol{A}^{-1} such that

$$
\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{I}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

- If \boldsymbol{A} is square and $\rho(\boldsymbol{A})=n, \boldsymbol{A}$ is invertible or nonsingular
- If \boldsymbol{A} is square and $\rho(\boldsymbol{A})<n, \boldsymbol{A}$ is noninvertible or singular

Matrix inverse

- Properties

$$
\begin{aligned}
(A B)^{-1} & =B^{-1} A^{-1} \\
\left(\boldsymbol{A}^{H}\right)^{-1} & =\left(\boldsymbol{A}^{-1}\right)^{H}
\end{aligned}
$$

- Matrix Inversion Lemma:

$$
(A+B C D)^{-1}=A^{-1}-A^{-1} B\left(C^{-1}+D A^{-1} B\right)^{-1} D A^{-1}
$$

- Woodbury's Identity (special case of Matrix Inversion Lemma):

$$
\left(A+u v^{H}\right)^{-1}=A^{-1}-\frac{A^{-1} u v^{H} A^{-1}}{1+v^{H} A^{-1} u}
$$

Determinant and trace

- The determinant of an $n \times n$ matrix \boldsymbol{A} is defined recursively by

$$
\operatorname{det}(\boldsymbol{A})=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(\boldsymbol{A}_{i j}\right)
$$

where $\boldsymbol{A}_{i j}$ is the matrix obtained by removing the i th row and j th column from \boldsymbol{A}

- An $n \times n$ matrix \boldsymbol{A} is invertible or nonsingular $\Leftrightarrow \operatorname{det}(\boldsymbol{A}) \neq 0$
- Properties:

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A B}) & =\operatorname{det}(\boldsymbol{A}) \operatorname{det}(\boldsymbol{B}) \\
\operatorname{det}(\alpha \boldsymbol{A}) & =\alpha^{n} \operatorname{det}(\boldsymbol{A}) \\
\operatorname{det}\left(\boldsymbol{A}^{-1}\right) & =\frac{1}{\operatorname{det}(\boldsymbol{A})}
\end{aligned}
$$

- The trace of an $n \times n$ matrix \boldsymbol{A} is given by

$$
\operatorname{tr}(\boldsymbol{A})=\sum_{i=1}^{n} a_{i i}
$$

Linear equations

- A set of n linear equations in m unknowns (stacked in the vector \boldsymbol{x}), can be written as

$$
A x=b
$$

where \boldsymbol{A} is an $m \times n$ matrix and \boldsymbol{B} is an $m \times 1$ vector

- If $m=n$ and $\rho(\boldsymbol{A})=n$ (square invertible), then $\boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b}$
- If $m=n$ and $\rho(\boldsymbol{A})<n$ (singular), then there is either no solution or many solutions; If x_{0} is a solution, then

$$
\boldsymbol{x}=\boldsymbol{x}_{0}+\alpha_{1} \boldsymbol{z}_{1}+\cdots+\alpha_{k} \boldsymbol{z}_{k}
$$

is also a solution with $\left\{\boldsymbol{z}_{i}, i=1,2, \ldots, k\right\}$ is a set of $k=n-\rho(\boldsymbol{A})$ linearly independent solutions of $\boldsymbol{A z}=\mathbf{0}$

Linear equations

- If $n<m$, there are many solutions (the problem is underdetermined) We often take the solution with the minimal norm

$$
\min _{\boldsymbol{x}}\|\boldsymbol{x}\| \text { such that } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}
$$

The solution is given by $\boldsymbol{x}_{0}=\boldsymbol{A}^{\mathrm{H}}\left(\boldsymbol{A} \boldsymbol{A}^{\mathrm{H}}\right)^{-1} \boldsymbol{b}$, where $\boldsymbol{A}^{+}=\boldsymbol{A}^{\mathrm{H}}\left(\boldsymbol{A} \boldsymbol{A}^{\mathrm{H}}\right)^{-1}$ is the pseudo-inverse of \boldsymbol{A} for the underdetermined problem $(\rho(\boldsymbol{A})=n$)

- If $n>m$, there is generally no solution (the problem is overdetermined). We often take the least squares solution

$$
\min _{\boldsymbol{x}}\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|
$$

The solution is given by $x_{0}=\left(A^{H} \boldsymbol{A}\right)^{-1} A^{H} b$, where $\boldsymbol{A}^{+}=\left(\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\mathrm{H}}$ is the pseudo-inverse of \boldsymbol{A} for the overdetermined problem $(\rho(\boldsymbol{A})=m$)

Special matrix forms

- Diagonal and block diagonal matrix:

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right], \quad \boldsymbol{A}=\left[\begin{array}{cccc}
\boldsymbol{A}_{11} & 0 & \cdots & 0 \\
0 & \boldsymbol{A}_{22} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \boldsymbol{A}_{k k}
\end{array}\right]
$$

- Toeplitz and Hankel matrix (constant along (anti-)diagonal):

$$
\boldsymbol{A}=\left[\begin{array}{llll}
1 & 3 & 5 & 7 \\
2 & 1 & 3 & 5 \\
4 & 2 & 1 & 3 \\
6 & 4 & 2 & 1
\end{array}\right], \quad \boldsymbol{A}=\left[\begin{array}{llll}
1 & 3 & 5 & 7 \\
3 & 5 & 7 & 4 \\
5 & 7 & 4 & 2 \\
7 & 4 & 2 & 1
\end{array}\right]
$$

- A square matrix \boldsymbol{A} is called unitary if $\boldsymbol{A} \boldsymbol{A}^{\mathrm{H}}=\boldsymbol{I}$ and $\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}=\boldsymbol{I}$, or in other words, the columns and rows of \boldsymbol{A} are orthonormal

Hermitian forms

- The quadratic form of an $n \times n$ Hermitian matrix \boldsymbol{A} is

$$
Q_{A}(x)=x^{H} \boldsymbol{A} x=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}^{*} a_{i j} x_{j}
$$

where $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{\top}$

- The matrix \boldsymbol{A} is

$$
\begin{array}{lll}
\text { positive definite, } & \boldsymbol{A}>0, & \text { if } Q_{A}(x)>0, \forall x \neq \mathbf{0}, \\
\text { positive semidefinite, }, & \boldsymbol{A} \geq 0, & \text { if } Q_{A}(x) \geq 0, \forall x \geqslant 0
\end{array}
$$

negative definite, $\quad \boldsymbol{A}<0, \quad$ if $Q_{A}(x)<0, \forall x \neq \mathbf{0}$,
negative semidefinite, $\quad \boldsymbol{A} \leq 0, \quad$ if $Q_{A}(x) \leq 0, \forall x \neq \mathbf{0}$

- For any $n \times n$ matrix \boldsymbol{A} and any $n \times m(m \leq n)$ matrix \boldsymbol{B} with full rank m, the definiteness of A and $B^{H} A B$ are the same

Eigenvalues and eigenvectors

- For an $n \times n$ matrix \boldsymbol{A} there are n eigenvalues λ_{i} and n eigenvectors \boldsymbol{v}_{i} satisfying

$$
\boldsymbol{A} \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{i}
$$

- The eigenvalues are the roots of the characteristic polynomial

$$
p(\lambda)=\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})
$$

- The eigenvectors have a scaling ambiguity and are often normalized, $\left\|\boldsymbol{v}_{i}\right\|=1$
- The eigenvectors corresponding to distinct eigenvalues are linearly independent
- If \boldsymbol{A} has rank $\rho(\boldsymbol{A})$, then \boldsymbol{A} has $\rho(\boldsymbol{A})$ nonzero eigenvalues and $n-\rho(\boldsymbol{A})$ zero eigenvalues
- For a Hermitian matrix,
- the eigenvalues are real
- the eigenvectors are orthonormal
- matrix positive (negative) definite \Leftrightarrow all eigenvalues positive (negative)

Eigenvalue decomposition

- For an $n \times n$ matrix \boldsymbol{A} with a set of n linearly independent eigenvectors we can perform an eigenvalue decomposition of \boldsymbol{A}

$$
A=v \boldsymbol{\Lambda} v^{-1}
$$

where \boldsymbol{v} contains the eigenvectors and $\boldsymbol{\Lambda}$ is a diagonal matrix holding the eigenvalues

- Since for a Hermitian matrix there always exists a set of n orthonormal eigenvectors, the eigenvalue decomposition can be written as

$$
\boldsymbol{A}=\boldsymbol{v} \boldsymbol{\Lambda} \boldsymbol{v}^{\mathrm{H}}=\lambda_{1} \boldsymbol{v}_{1} \boldsymbol{v}_{1}^{\mathrm{H}}+\lambda_{2} \boldsymbol{v}_{2} \boldsymbol{v}_{2}^{\mathrm{H}}+\cdots+\lambda_{n} \boldsymbol{v}_{n} \boldsymbol{v}_{n}^{\mathrm{H}}
$$

where λ_{i} are the eigenvalues and \boldsymbol{v}_{i} is a set of orthonormal eigenvectors

Optimization theory

- The local and global minima of an objective function $f(x)$, with x real, satisfy

$$
\frac{d f(x)}{d x}=0 \quad \frac{d^{2} f(x)}{d x}>0
$$

If $f(x)$ is convex, there is only one minimum, which is the global one.

- For an objective function $f(z)$, with z complex,
- we rewrite $f(z)$ as $f\left(z, z^{*}\right)$ and treat z and z^{*} as two independent variables
- minimize $f\left(z, z^{*}\right)$ w.r.t. z and z^{*}
- the stationary points of $f\left(z, z^{*}\right)$ are found by setting the derivative of $f\left(z, z^{*}\right)$ w.r.t. to z or z^{*} to zero
- but, the direction of the maximum rate of change is the gradient w.r.t. z^{*}

Optimization theory

- For an objective function in two or more real variables, $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f(\boldsymbol{x})$, the first-order derivative (gradient) and second-order derivative (Hessian) are required

$$
\left\{\nabla_{x} f(\boldsymbol{x})\right\}_{i}=\frac{\partial f(\boldsymbol{x})}{\partial x_{i}} \quad\left\{\boldsymbol{H}_{x}\right\}_{i j}=\frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{i} \partial x_{j}}
$$

- The local and global minima of an objective function $f(x)$, with x real, satisfy

$$
\nabla_{x} f(\boldsymbol{x})=\mathbf{0} \quad \boldsymbol{H}_{x}>0
$$

