ET4350: Applied Convex Optimization

Delft University of Technology

Course Information

- ► Instructors:
 - Prof. Geert Leus
 - Prof. Borbala Hunyadi (Bori)
 - MSc. Alberto Natali
- Class schedule (watch out for any changes on TU Delft roosters):
 - Wednesdays between 10.45-12.30
 - Fridays between 10.45-12.30

Course Information

- Book(s) are freely available online
 - Stephen Boyd and Lieven Vandenberghe, "Convex Optimization", Cambridge University Press, 2004.
 - Slides/lecture notes for subgradient methods.
- Assessment
 - Open-book written exam.
 - Compulsory lab assignment worth 1 EC (20%); report and short presentation. Enroll via Brightspace.
- Course information:
 - http://ens.ewi.tudelft.nl/Education/courses/ee4530/index.php

Mathematical optimization

(mathematical) optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, ..., m$

- $x = (x_1, \ldots, x_n)$: optimization variables
- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$: constraint functions

optimal solution x^* has smallest value of f_0 among all vectors that satisfy the constraints

Array processing

- omnidirectional antenna elements at positions (x_1, y_1) , ..., (x_n, y_n)
- linearly combine with complex weights w_i :

$$y(\theta) = \sum_{i=1}^{n} w_i e^{j(x_i \cos \theta + y_i \sin \theta)}$$

- $y(\theta)$ is (complex) antenna array gain pattern
- $|y(\theta)|$ gives sensitivity of array as function of incident angle θ
- depends on design variables Re w, Im w
 (called antenna array weights or shading coefficients)

design problem: choose w to achieve desired gain pattern

Array processing

Sidelobe level minimization

make $|y(\theta)|$ small for $|\theta - \theta_{tar}| > \alpha$

(θ_{tar} : target direction; 2α : beamwidth)

via least-squares (discretize angles)

 $\begin{array}{ll} \mbox{minimize} & \sum_i |y(\theta_i)|^2 \\ \mbox{subject to} & y(\theta_{\rm tar}) = 1 \end{array}$

(sum is over angles outside beam)

minimize sidelobe level (discretize angles)

 $\begin{array}{ll} \text{minimize} & \max_i |y(\theta_i)| \\ \text{subject to} & y(\theta_{\mathsf{tar}}) = 1 \end{array}$

(max over angles outside beam)

Machine learning

separate two sets of points $\{x_1, \ldots, x_N\}$, $\{y_1, \ldots, y_M\}$ by a hyperplane:

$$a^T x_i + b > 0, \quad i = 1, \dots, N, \qquad a^T y_i + b < 0, \quad i = 1, \dots, M$$

homogeneous in a, b, hence equivalent to

$$a^T x_i + b \ge 1, \quad i = 1, \dots, N, \qquad a^T y_i + b \le -1, \quad i = 1, \dots, M$$

a set of linear inequalities in \boldsymbol{a} , \boldsymbol{b}

Machine learning

(Euclidean) distance between hyperplanes

$$\mathcal{H}_1 = \{z \mid a^T z + b = 1\}$$

$$\mathcal{H}_2 = \{z \mid a^T z + b = -1\}$$

is $\operatorname{dist}(\mathcal{H}_1, \mathcal{H}_2) = 2/\|a\|_2$

to separate two sets of points by maximum margin,

$$\begin{array}{ll} \text{minimize} & (1/2) \|a\|_2 \\ \text{subject to} & a^T x_i + b \geq 1, \quad i = 1, \dots, N \\ & a^T y_i + b \leq -1, \quad i = 1, \dots, M \end{array}$$

Examples

portfolio optimization

- variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, minimum return
- objective: overall risk or return variance

device sizing in electronic circuits

- variables: device widths and lengths
- constraints: manufacturing limits, timing requirements, maximum area
- objective: power consumption

data fitting

- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of misfit or prediction error

Solving optimization problems

general optimization problem

- very difficult to solve
- methods involve some compromise, *e.g.*, very long computation time, or not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

- least-squares problems
- linear programming problems
- convex optimization problems

Least-squares

minimize $||Ax - b||_2^2$

solving least-squares problems

- analytical solution: $x^{\star} = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to n^2k ($A \in \mathbf{R}^{k \times n}$); less if structured
- a mature technology

using least-squares

- least-squares problems are easy to recognize
- a few standard techniques increase flexibility (*e.g.*, including weights, adding regularization terms)

Linear programming

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to n^2m if $m \ge n$; less with structure
- a mature technology

using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (*e.g.*, problems involving ℓ_1 or ℓ_∞ -norms, piecewise-linear functions)

Convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le b_i$, $i = 1, \dots, m$

• objective and constraint functions are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

 $\text{ if } \alpha+\beta=1 \text{, } \alpha\geq 0 \text{, } \beta\geq 0 \\$

• includes least-squares problems and linear programs as special cases

The case of a convex cost function

Local minima: x^* is an unconstrained local minimum of $f_0 : \mathbb{R}^n \to \mathbb{R}$ if is no worse than its neighbors.

 $f_0(x^{\star}) \leq f_0(x), \quad \forall x \in \mathbf{R}^n \text{ with } \|x - x^{\star}\| < \epsilon$

for $\epsilon > 0$.

Global minima: x^* is an unconstrained local minimum of $f_0 : \mathbf{R}^n \mapsto \mathbf{R}$ if it is no worse than all other vectors.

$$f_0(x^\star) \le f_0(x), \quad \forall x \in \mathbf{R}^n.$$

When the function is convex every local minimum is also global.

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to $\max\{n^3, n^2m, F\}$, where F is cost of evaluating f_i 's and their first and second derivatives
- almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

Example

m lamps illuminating n (small, flat) patches

intensity I_k at patch k depends linearly on lamp powers p_j :

$$I_k = \sum_{j=1}^m a_{kj} p_j, \qquad a_{kj} = r_{kj}^{-2} \max\{\cos \theta_{kj}, 0\}$$

problem: achieve desired illumination I_{des} with bounded lamp powers

minimize
$$\max_{k=1,...,n} |\log I_k - \log I_{des}|$$

subject to $0 \le p_j \le p_{max}, \quad j = 1,...,m$

how to solve?

- 1. use uniform power: $p_j = p$, vary p
- 2. use least-squares:

minimize
$$\sum_{k=1}^n (I_k - I_{\mathsf{des}})^2$$

round p_j if $p_j > p_{\max}$ or $p_j < 0$

3. use weighted least-squares:

minimize
$$\sum_{k=1}^{n} (I_k - I_{des})^2 + \sum_{j=1}^{m} w_j (p_j - p_{max}/2)^2$$

iteratively adjust weights w_j until $0 \le p_j \le p_{\max}$

4. use linear programming:

minimize
$$\max_{k=1,...,n} |I_k - I_{des}|$$

subject to $0 \le p_j \le p_{max}, \quad j = 1,...,m$

which can be solved via linear programming

of course these are approximate (suboptimal) 'solutions'

5. use convex optimization: problem is equivalent to

minimize
$$f_0(p) = \max_{k=1,...,n} h(I_k/I_{des})$$

subject to $0 \le p_j \le p_{max}, \quad j = 1,...,m$

with $h(u) = \max\{u, 1/u\}$

 f_0 is convex because maximum of convex functions is convex

exact solution obtained with effort \approx modest factor \times least-squares effort

additional constraints: does adding 1 or 2 below complicate the problem?

- 1. no more than half of total power is in any 10 lamps
- 2. no more than half of the lamps are on $(p_j > 0)$
- answer: with (1), still easy to solve; with (2), extremely difficult
- moral: (untrained) intuition doesn't always work; without the proper background very easy problems can appear quite similar to very difficult problems

Course goals and topics

Goals

- 1. recognize and formulate problems (such as the illumination problem, classification, etc.) as convex optimization problems
- 2. Use optimization tools (CVX, YALMIP, etc.) as a part the lab assignment.
- 3. characterize optimal solution (optimal power distribution), give limits of performance, etc.

Topics

- 1. Background and optimization basics;
- 2. Convex sets and functions;
- 3. Canonical convex optimization problems (LP, QP, SDP);
- 4. Second-order methods (unconstrained and constrained optimization);
- 5. First-order methods (gradient, subgradient);

Project 1: Change Detection in Time Series Model

$$y(t+3) = a(t)y(t+2) + b(t)y(t+1) + c(t)y(t) + v(t); \quad v(t) \sim \mathcal{N}(0, 0.5^2),$$

assumption: a(t), b(t), and c(t) are piecewise constant, change infrequently

Project 2: Linear Support Vector Machines

Project 3: Multidimensional Scaling for Localization.

		А	R	Μ	V	G	
А	(0	71	146	177	127	
A R		71	0	136	104	159	
Μ		146	136	0	208	258	
V		177	104	208	0	279	
G		127	159	258	279	0	Ϊ

$$t_{ij}^{2} \propto \|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2}$$
$$\mathbf{T} = \mathbf{1} \operatorname{diag}(\mathbf{X}^{T} \mathbf{X}) - 2\mathbf{X}^{T} \mathbf{X} + \operatorname{diag}(\mathbf{X}^{T} \mathbf{X}) \mathbf{1}^{T}$$

Project 4: MIMO Detection

entries of \mathbf{s}_{c} belong to the finite-alphabet set $\{\pm 1 \pm j\}$

Project 5: Compressed Sensing

Subsampled frequency-domain signal