ET4350: Applied Convex Optimization

Delft University of Technology

Course Information

- Instructors:
- Prof. Geert Leus
- Prof. Borbala Hunyadi (Bori)
- MSc. Alberto Natali
- Class schedule (watch out for any changes on TU Delft roosters):
- Wednesdays between 10.45-12.30
- Fridays between 10.45-12.30

Course Information

- Book(s) are freely available online
- Stephen Boyd and Lieven Vandenberghe, "Convex Optimization", Cambridge University Press, 2004.
- Slides/lecture notes for subgradient methods.
- Assessment
- Open-book written exam.
- Compulsory lab assignment worth 1 EC (20\%); report and short presentation. Enroll via Brightspace.
- Course information:
- http://ens.ewi.tudelft.nl/Education/courses/ee4530/index.php

Mathematical optimization

(mathematical) optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

- $x=\left(x_{1}, \ldots, x_{n}\right)$: optimization variables
- $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$: objective function
- $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}, i=1, \ldots, m$: constraint functions
optimal solution x^{\star} has smallest value of f_{0} among all vectors that satisfy the constraints

Array processing

- omnidirectional antenna elements at positions $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
- linearly combine with complex weights w_{i} :

$$
y(\theta)=\sum_{i=1}^{n} w_{i} e^{j\left(x_{i} \cos \theta+y_{i} \sin \theta\right)}
$$

- $y(\theta)$ is (complex) antenna array gain pattern
- $|y(\theta)|$ gives sensitivity of array as function of incident angle θ

- depends on design variables $\operatorname{Re} w, \operatorname{Im} w$ (called antenna array weights or shading coefficients)
design problem: choose w to achieve desired gain pattern

Array processing

Sidelobe level minimization

make $|y(\theta)|$ small for $\left|\theta-\theta_{\operatorname{tar}}\right|>\alpha$
($\theta_{\text {tar }}$: target direction; 2α : beamwidth)

via least-squares (discretize angles)

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i}\left|y\left(\theta_{i}\right)\right|^{2} \\
\text { subject to } & y\left(\theta_{\mathrm{tar}}\right)=1
\end{array}
$$

(sum is over angles outside beam)
minimize sidelobe level (discretize angles)
minimize $\max _{i}\left|y\left(\theta_{i}\right)\right|$

$$
\text { subject to } \quad y\left(\theta_{\mathrm{tar}}\right)=1
$$

(max over angles outside beam)

Machine learning

separate two sets of points $\left\{x_{1}, \ldots, x_{N}\right\},\left\{y_{1}, \ldots, y_{M}\right\}$ by a hyperplane:

$$
a^{T} x_{i}+b>0, \quad i=1, \ldots, N, \quad a^{T} y_{i}+b<0, \quad i=1, \ldots, M
$$

homogeneous in a, b, hence equivalent to

$$
a^{T} x_{i}+b \geq 1, \quad i=1, \ldots, N, \quad a^{T} y_{i}+b \leq-1, \quad i=1, \ldots, M
$$

a set of linear inequalities in a, b

Machine learning

(Euclidean) distance between hyperplanes

$$
\begin{aligned}
\mathcal{H}_{1} & =\left\{z \mid a^{T} z+b=1\right\} \\
\mathcal{H}_{2} & =\left\{z \mid a^{T} z+b=-1\right\}
\end{aligned}
$$

is $\operatorname{dist}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)=2 /\|a\|_{2}$
to separate two sets of points by maximum margin,

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2)\|a\|_{2} \\
\text { subject to } & a^{T} x_{i}+b \geq 1, \quad i=1, \ldots, N \\
& a^{T} y_{i}+b \leq-1, \quad i=1, \ldots, M
\end{array}
$$

Examples

portfolio optimization

- variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, minimum return
- objective: overall risk or return variance
device sizing in electronic circuits
- variables: device widths and lengths
- constraints: manufacturing limits, timing requirements, maximum area
- objective: power consumption

data fitting

- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of misfit or prediction error

Solving optimization problems

general optimization problem

- very difficult to solve
- methods involve some compromise, e.g., very long computation time, or not always finding the solution
exceptions: certain problem classes can be solved efficiently and reliably
- least-squares problems
- linear programming problems
- convex optimization problems

Least-squares

$$
\operatorname{minimize} \quad\|A x-b\|_{2}^{2}
$$

solving least-squares problems

- analytical solution: $x^{\star}=\left(A^{T} A\right)^{-1} A^{T} b$
- reliable and efficient algorithms and software
- computation time proportional to $n^{2} k\left(A \in \mathbf{R}^{k \times n}\right)$; less if structured
- a mature technology

using least-squares

- least-squares problems are easy to recognize
- a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

Linear programming

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to $n^{2} m$ if $m \geq n$; less with structure
- a mature technology
using linear programming
- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (e.g., problems involving $\ell_{1^{-}}$or ℓ_{∞}-norms, piecewise-linear functions)

Convex optimization problem

```
minimize }\mp@subsup{f}{0}{}(x
subject to }\mp@subsup{f}{i}{}(x)\leq\mp@subsup{b}{i}{},\quadi=1,\ldots,
```

- objective and constraint functions are convex:

$$
f_{i}(\alpha x+\beta y) \leq \alpha f_{i}(x)+\beta f_{i}(y)
$$

$$
\text { if } \alpha+\beta=1, \alpha \geq 0, \beta \geq 0
$$

- includes least-squares problems and linear programs as special cases

The case of a convex cost function

Local minima: x^{\star} is an unconstrained local minimum of $f_{0}: \mathbf{R}^{n} \mapsto \mathbf{R}$ if is no worse than its neighbors.

$$
f_{0}\left(x^{\star}\right) \leq f_{0}(x), \quad \forall x \in \mathbf{R}^{n} \text { with }\left\|x-x^{\star}\right\|<\epsilon
$$

for $\epsilon>0$.

Global minima: x^{\star} is an unconstrained local minimum of $f_{0}: \mathbf{R}^{n} \mapsto \mathbf{R}$ if it is no worse than all other vectors.

$$
f_{0}\left(x^{\star}\right) \leq f_{0}(x), \quad \forall x \in \mathbf{R}^{n} .
$$

When the function is convex every local minimum is also global.

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to $\max \left\{n^{3}, n^{2} m, F\right\}$, where F is cost of evaluating f_{i} 's and their first and second derivatives
- almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

Example

m lamps illuminating n (small, flat) patches

intensity I_{k} at patch k depends linearly on lamp powers p_{j} :

$$
I_{k}=\sum_{j=1}^{m} a_{k j} p_{j}, \quad a_{k j}=r_{k j}^{-2} \max \left\{\cos \theta_{k j}, 0\right\}
$$

problem: achieve desired illumination $I_{\text {des }}$ with bounded lamp powers

$$
\begin{array}{ll}
\operatorname{minimize} & \max _{k=1, \ldots, n}\left|\log I_{k}-\log I_{\text {des }}\right| \\
\text { subject to } & 0 \leq p_{j} \leq p_{\text {max }}, \quad j=1, \ldots, m
\end{array}
$$

how to solve?

1. use uniform power: $p_{j}=p$, vary p
2. use least-squares:

$$
\operatorname{minimize} \quad \sum_{k=1}^{n}\left(I_{k}-I_{\mathrm{des}}\right)^{2}
$$

round p_{j} if $p_{j}>p_{\text {max }}$ or $p_{j}<0$
3. use weighted least-squares:

$$
\operatorname{minimize} \quad \sum_{k=1}^{n}\left(I_{k}-I_{\mathrm{des}}\right)^{2}+\sum_{j=1}^{m} w_{j}\left(p_{j}-p_{\max } / 2\right)^{2}
$$

iteratively adjust weights w_{j} until $0 \leq p_{j} \leq p_{\text {max }}$
4. use linear programming:

$$
\begin{array}{ll}
\operatorname{minimize} & \max _{k=1, \ldots, n}\left|I_{k}-I_{\mathrm{des}}\right| \\
\text { subject to } & 0 \leq p_{j} \leq p_{\max }, \quad j=1, \ldots, m
\end{array}
$$

which can be solved via linear programming
of course these are approximate (suboptimal) 'solutions'
5. use convex optimization: problem is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(p)=\max _{k=1, \ldots, n} h\left(I_{k} / I_{\text {des }}\right) \\
\text { subject to } & 0 \leq p_{j} \leq p_{\max }, \quad j=1, \ldots, m
\end{array}
$$

with $h(u)=\max \{u, 1 / u\}$

f_{0} is convex because maximum of convex functions is convex
exact solution obtained with effort \approx modest factor \times least-squares effort
additional constraints: does adding 1 or 2 below complicate the problem?

1. no more than half of total power is in any 10 lamps
2. no more than half of the lamps are on $\left(p_{j}>0\right)$

- answer: with (1), still easy to solve; with (2), extremely difficult
- moral: (untrained) intuition doesn't always work; without the proper background very easy problems can appear quite similar to very difficult problems

Course goals and topics

Goals

1. recognize and formulate problems (such as the illumination problem, classification, etc.) as convex optimization problems
2. Use optimization tools (CVX, YALMIP, etc.) as a part the lab assignment.
3. characterize optimal solution (optimal power distribution), give limits of performance, etc.

Topics

1. Background and optimization basics;
2. Convex sets and functions;
3. Canonical convex optimization problems (LP, QP, SDP);
4. Second-order methods (unconstrained and constrained optimization);
5. First-order methods (gradient, subgradient);

Project 1: Change Detection in Time Series Model

Time Signal

$$
y(t+3)=a(t) y(t+2)+b(t) y(t+1)+c(t) y(t)+v(t) ; \quad v(t) \sim \mathcal{N}\left(0,0.5^{2}\right)
$$

assumption: $a(t), b(t)$, and $c(t)$ are piecewise constant, change infrequently

Project 2: Linear Support Vector Machines

Project 3: Multidimensional Scaling for Localization.

Project 4: MIMO Detection

entries of \mathbf{s}_{c} belong to the finite-alphabet set $\{ \pm 1 \pm j\}$

Project 5: Compressed Sensing

Time-domain signal
(Positivity, sparsity?)

FFT

Frequency-domain signal

Sampling Mask

Subsampled frequency-domain signal

