2. Convex sets

Reading: 2.1 -2.3 and 2.6.1



Affine set

line through 21, 22: all points

xr=0xr;+ (1 —0)xs (# € R)

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations {2 | Az = b}

(conversely, every affine set can be expressed as solution set of system of
linear equations)



Convex set

line segment between 21 and x2: all points
r=~0x+ (1 —0)x
with 0 <0 <1
convex set: contains line segment between any two points in the set
ri,2€C, 0<0<1 — Or1+(1—-0)r2€C

examples (one convex, two nonconvex sets)




Convex combination and convex hull

convex combination of 21,. . ., 2x: any point 2 of the form
r =011+ 019 + -+ 02

with (‘)1++(')k:1, (‘)220

convex hull conv S: set of all convex combinations of points in .S



Convex cone

conic (nonnegative) combination of 27 and 22: any point of the form

r = 01x1 + 019

with 1 > 0, 65 > 0

convex cone: set that contains all conic combinations of points in the set



Dual cones

dual cone of a cone K:
K*={y|y'z>0forallz € K}

examples

e K =R}: K*=R]

o K =S K*=S"

o K ={(z,t)|lzla <t} K*={(z,1) | [lz]l2 <t}
o K ={(zt) |zl <t} K*={(2,1) | [|z]lcc <1}

first three examples are self-dual cones



Hyperplanes and halfspaces

hyperplane: set of the form {z | a2 = b} (a # 0)

e a is the normal vector

e hyperplanes are affine and convex; halfspaces are convex



Euclidean balls and ellipsoids

(Euclidean) ball with center 2. and radius r:

B(xze,r) =Ax | ||x — 22 <r} ={zc+ru| ||u)2 < 1}

ellipsoid: set of the form
{z| (x — :1?C)TP_1(:13 —x.) <1}

with P € ST, (i.e., P symmetric positive definite)

other representation: {z.+ Au | ||ul|2 < 1} with A square and nonsingular
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Norm balls and norm cones

norm: a function || - | that satisfies

o ||z|| >0; ||z =0if and only if 2 =0
o |[tx|| = |t|||z|| for t € R

o [z +yl <zl + vl
notation: || - || is general (unspecified) norm; || - ||symp is particular norm

norm ball with center 2. and radius r: {2 | [z — 2.| < r}

norm cone: {(x.t) | [[z| <t}

Euclidean norm cone is called second-
order cone

norm balls and cones are convex



Polyhedra

solution set of finitely many linear inequalities and equalities

Axr <D, Cr=d

(A e R™" C e RP*™ < is componentwise inequality)

(05} as

r

as
a4

polyhedron is intersection of finite number of halfspaces and hyperplanes
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Positive semidefinite cone

notation:

e S" is set of symmetric n x n matrices

e ST ={X €S"| X = 0}: positive semidefinite n x n matrices
XesS! = ~TX > >0 for all 2

Si IS @ convex cone

e ST ={X €S"| X > 0}: positive definite n x n matrices

Ty 2
1 €S
T ] i

example: [
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Operations that preserve convexity

practical methods for establishing convexity of a set
1. apply definition

ri.e0€C, 0<0<1 — O+ (1—-0)x,eC

2. show that C' is obtained from simple convex sets (hyperplanes,
halfspaces, norm balls, . . . ) by operations that preserve convexity

e intersection

e affine functions

e perspective function

e linear-fractional functions
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Intersection

the intersection of (any number of ) convex sets is convex

example:
S={xeR"™||pt)| <1for|t| <7m/3}

where p(t) = 2y cost + x9cos 2t + - - - + 2, cos mt

for m = 2:
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Affine function

suppose f : R™ — R™ is affine (f(2) = Az + b with A € R™*™, b € R™)

e the image of a convex set under f is convex

S CR"convex — f(S5)=A{f(x)]|x € S} convex

e the inverse image f~1(C) of a convex set under f is convex

C CR™convex = [~H(C)={xeR"| f(x)e€ C} convex

examples

e scaling, translation, projection

e solution set of linear matrix inequality {2 | 214 +--- + 2,,A,, X B}
(with A;, B € SP)

e hyperbolic cone {z | 2T Pa < (¢T2)2, ¢T2 > 0} (with P € ST})
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Reading: 3.1-3.5

3. Convex functions
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Definition
f:R™ — R is convex if dom f is a convex set and
fOx+(1=0)y) <O0f(x)+ (1 —-6)f(y)

forall z,yedom f, 0 <0 <1

e f is concave if —f is convex

e [ is strictly convex if dom f is convex and

fOx+(1=0)y) <0f(x)+(1-0)f(y)

forz.yedomf, »#y, 0<6 <1
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Extended-value extension

extended-value extension fof fis

flx)= f(x), x¢&domf. f(x) =00, 2 ¢&domf

often simplifies notation; for example, the condition
0<0<1 =[O+ (1=0)y) <Of(2)+(1-0)f(y)
(as an inequality in RU {occ}), means the same as the two conditions

e dom [ Is convex

e for x,y € dom f,

0<0<1 = [fllr+(1-0)y) <0f(x)+(1-0)f(y)
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First-order condition

f is differentiable if dom f is open and the gradient

Y f(z) = (é)f(:r) df(x) é)f(:r))

Ory  Ory 7 Oxy,

exists at each # € dom f

1st-order condition: differentiable f with convex domain is convex iff

fy) > fx)+Vf(x)"(y—a) forall 2,y € dom f

f(y)
f(aﬂ-+—‘7f(m)T(y-—-I)

(z, f(x))

first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian V2 f(z) € S",

92 f(x
sz(:r)ij _ @) i,j=1,..., n.

Dx;01;

exists at each # € dom f

2nd-order conditions: for twice differentiable f with convex domain

e f is convex if and only if

VZf(2) =0 forall 2 € dom f

o if V2f(22) = 0 for all 2 € dom f, then f is strictly convex
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Examples on R

convex:
e affine: ax +bon R, for any a,b € R

e exponential: ¢**, for any a € R

e powers: x*on R, fora>1ora <0

e powers of absolute value: |2|P on R, for p > 1

e negative entropy: xlog 2 on R.L

concave:
e affine: ax +bon R, for any a,b € R
e powers: z*on R, for0 <a <1

e logarithm: logx on Ry
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Examples on R" and R"™*"

affine functions are convex and concave: all norms are convex

examples on R"
e affine function f(2) = ala +b

e norms: [, = (S |aif?) /7 for p > 1 ]| = mag [z

examples on R™”™™ (1m x n matrices)

e affine function

m mn

F(X) = tr(ATX) +b=3" 3" Ay X5+

i=1 j=1

e spectral (maximum singular value) norm

F(X) = 1Xl2 = Omax(X) = Amax(XTX))"/2
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Examples
quadratic function: f(2) = (1/2)2T Pz + ¢ +r (with P € S™)
V(@) =Pr+q  V(2)=P
convex if P > 0

least-squares objective: f(z) = ||Axz —b||3
Vf(x)=24T(Ax—b), V2f(z)=24TA

convex (for any A)

quadratic-over-linear: f(z.y) = 2%/y

T
sz(:v-y)zg[ ! ” Ul] =0

.U3

convex for y > ()
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log-sum-exp: f(2) =log) 7 _, expay is convex

L. 1
].T:‘ dlag(:) — (1T:)2:‘3’T (:‘k = exp ;1?k)

V(@) =

to show V2f(2) = 0, we must verify that vTV2f(z)v > 0 for all v:

ZL «IJ Zk «k (Zkl’k:k)z >0

TV f ()0 = AT >

since (3, vp2k)? < (30, 2kv7) (2, 2k) (from Cauchy-Schwarz inequality)

geometric mean: f(z) = ([[;_, 2x)'/™ on R is concave

(similar proof as for log-sum-exp)
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Restriction of a convex function to a line

f : R™ — R is convex if and only if the function ¢ : R — R,
g(t) = f(x+tv), domg={t|2+tvedomf}

is convex (in t) for any » € dom f, v € R"
can check convexity of f by checking convexity of functions of one variable

example. f:S" — R with f(X) = logdet X, dom f = Si+
g(t) =logdet(X +tV) = logdet X + logdet(I + tX Y2y x~1/2)

= logdet X + Z log(1 + tA;)
1=1

where \; are the eigenvalues of X ~1/2y X —1/2

g is concave in t (for any choice of X > 0, V'); hence f is concave
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Epigraph and sublevel set

a-sublevel set of f: R" — R:
Co={redomf| f(z) <a}

sublevel sets of convex functions are convex (converse is false)

epigraph of f : R" — R:
epi f = {(x.t) e R"™' |z € dom f, f(x) <t}

epi f

f is convex if and only if epi f is a convex set
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Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)
2. for twice differentiable functions, show V2 f(z) = 0

3. show that f is obtained from simple convex functions by operations
that preserve convexity

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
composition

minimization

perspective
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Positive weighted sum & composition with affine function

nonnegative multiple: af is convex if f is convex, o > ()
sum: f1 + f2 convex if f1, f2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax + D) is convex if f is convex

examples

e log barrier for linear inequalities

m

flz) =— Z log(b; — al2), dom f={z|ala<b.i=1,..., m}
i=1

e (any) norm of affine function: f(x) = ||Axz + b||
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Pointwise maximum

if f1, ..., fm are convex, then f(2) = max{fi(z),..., fm(2)} is convex

examples
e piecewise-linear function: f(x) = 1‘1121){2-:1,_,,’,71((z,;-rzr + b;) is convex
e sum of r largest components of 2 € R™:

flx) =2p) + 2+ + 2y

is convex (x; is ith largest component of )
proof:

flx) =max{e; + 2+ +a; |1 <iyp <ipg<--- <i. <n}
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Pointwise supremum

if f(a.y) is convex in a for each y € A, then

g(z) = sup f(x,y) supremum
yeA /

A

IS convex

examples

: . M) — o o
e support function of a set C: S¢(2) = sup, .o y” x is convex

e distance to farthest point in a set ("

f(x) = sup o — y|
yel

e maximum eigenvalue of symmetric matrix: for X € S™,

Amax(X) = sup y Xy
lyll2=1
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Composition with scalar functions
composition of g : R —+ R and h: R = R:
f(x) =Nh(g(z))

g convex, h convex, h nondecreasing

f is convex if . .
g concave, h convex, h nonincreasing

e proof (for n = 1, differentiable g, h)
(@) = h"(g(2))g' (2)* + b (g(2))g" (2)
e note: monotonicity must hold for extended-value extension h

examples
e cxp g(x) is convex if g is convex

e 1/g(x) is convex if g is concave and positive
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Vector composition

composition of ¢ : R — R¥ and h : R* = R:

f(x) =h(g(x)) = h(g1(x), g2(x),...,gk(2))

g; convex, h convex, h nondecreasing in each argument

f is convex if , A
g; concave, h convex, h nonincreasing in each argument

proof (for n = 1, differentiable ¢, h)

f"(x) = ¢'(2)"'V2h(g(x))g (x) + Vh(g(2))" g" (x)

examples
e > " loggi(x) is concave if g; are concave and positive

e log> " expg;(x) is convex if g; are convex
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Minimization
if f(2,y) is convex in (x,vy) and C' is a convex set, then

x)= 1t f(x,
g(x) Jlelcf(l y)

IS convex

examples

o f(x,y)=aT Az + 22T By + yT Cy with

[AB

e C,];o. C =0

minimizing over y gives g(x) = inf, f(z.y) = 2T(A— BC BT«
g is convex, hence Schur complement A — BC—1BT =0

e distance to a set: dist(xz,5) = inf,cg ||z — y|| is convex if S is convex
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The conjugate function

the conjugate of a function f is

[ (y) =

,
s
4
s
,
s
4
’
4
4
'
’
R
7’
s v
L b
rd rd
’ ’
A+
4 s

sup (yTz — f(z))

rEdom f

e f* is convex (even if f is not)

e will be useful in chapter 5

o

-’ V(IO, — 1" (v))
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examples

e negative logarithm f(x) = —logx
f*(y) = sup(zy+ logx)
x>0
[ —l—log(—y) y<0
- o0 otherwise

e strictly convex quadratic f(2) = (1/2)2TQx with Q € ST .

*y) = sup(yTz—(1/2)2TQx)

1 g
Sv QY
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Quasiconvex functions

f : R"™ — R is quasiconvex if dom f is convex and the sublevel sets
So={z € dom f | f(x) < a}

are convex for all «

e f is quasiconcave if —f is quasiconvex

e f is quasilinear if it is quasiconvex and quasiconcave



Examples

\/m Is quasiconvex on R

ceil(z) =inf{z € Z | z > x} is quasilinear
log = is quasilinear on Ry ¢

f(x1,x2) = x119 is quasiconcave on R%Hr

linear-fractional function

T b
f(z) :%, dom f = {z | Tz +d >0}
Is quasilinear
distance ratio
x—a
Fa) =222 dom f = (o | e~ alls < [l b2}
|z — bl|2

IS quasiconvex



Log-concave and log-convex functions

a positive function f is log-concave if log f is concave:
f(0x + (1= 0)y) > f(x)f(y)' ™" for0<6<1

f is log-convex if log f is convex

e powers: % on R, is log-convex for a < 0, log-concave for a > 0

e many common probability densities are log-concave, e.g., normal:

f(z) = 1 3 a—2)TE (a—7)

v (2m)" det X

e cumulative Gaussian distribution function ® is log-concave

1 x
O(z) = \/—2_7r/ e~ /2 dy



example: yield function
Y(x) = prob(zx +w € 5)
e © € R™: nominal parameter values for product

e w € R™: random variations of parameters in manufactured product

e S: set of acceptable values

if S is convex and w has a log-concave pdf, then

e Y is log-concave

e yield regions {x | Y(x) > «} are convex



