2. Convex sets

Reading: 2.1 – 2.3 and 2.6.1

Affine set

line through x_1 , x_2 : all points

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$

(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex set

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta) x_2$$

with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

examples (one convex, two nonconvex sets)

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \ge 0$

convex hull conv S: set of all convex combinations of points in S

Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

 $x = \theta_1 x_1 + \theta_2 x_2$

with $\theta_1 \ge 0$, $\theta_2 \ge 0$

convex cone: set that contains all conic combinations of points in the set

Dual cones

dual cone of a cone *K*:

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

examples

- $K = \mathbf{R}^n_+$: $K^* = \mathbf{R}^n_+$
- $K = \mathbf{S}_{+}^{n}$: $K^{*} = \mathbf{S}_{+}^{n}$
- $K = \{(x,t) \mid ||x||_2 \le t\}$: $K^* = \{(x,t) \mid ||x||_2 \le t\}$
- $K = \{(x,t) \mid ||x||_1 \le t\}$: $K^* = \{(x,t) \mid ||x||_\infty \le t\}$

first three examples are **self-dual** cones

K

K

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$

halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$

- *a* is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^n$ (*i.e.*, P symmetric positive definite)

other representation: $\{x_c + Au \mid ||u||_2 \leq 1\}$ with A square and nonsingular

Norm balls and norm cones

norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- ||tx|| = |t| ||x|| for $t \in \mathbf{R}$
- $||x + y|| \le ||x|| + ||y||$

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{symb}$ is particular norm norm ball with center x_c and radius r: $\{x \mid \|x - x_c\| \le r\}$

norm cone: $\{(x,t) \mid ||x|| \le t\}$ Euclidean norm cone is called second-order cone

norm balls and cones are convex

Polyhedra

solution set of finitely many linear inequalities and equalities

$$Ax \preceq b, \qquad Cx = d$$

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \preceq \text{ is componentwise inequality})$

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

notation:

- \mathbf{S}^n is set of symmetric $n \times n$ matrices
- $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}^n_+ \iff z^T X z \ge 0$$
 for all z

 \mathbf{S}_{+}^{n} is a convex cone

• $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}$: positive definite $n \times n$ matrices

Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection

the intersection of (any number of) convex sets is convex

example:

$$S = \{ x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3 \}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$

for m = 2:

Affine function

suppose $f : \mathbf{R}^n \to \mathbf{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$

 \bullet the image of a convex set under f is convex

 $S \subseteq \mathbf{R}^n \text{ convex } \implies f(S) = \{f(x) \mid x \in S\} \text{ convex }$

• the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m$$
 convex $\implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\}$ convex

examples

- scaling, translation, projection
- solution set of linear matrix inequality {x | x₁A₁ + · · · + x_mA_m ≤ B} (with A_i, B ∈ S^p)
- hyperbolic cone $\{x \mid x^T P x \leq (c^T x)^2, c^T x \geq 0\}$ (with $P \in \mathbf{S}^n_+$)

3. Convex functions

Reading: 3.1-3.5

Definition

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$

- f is concave if -f is convex
- f is strictly convex if $\operatorname{dom} f$ is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \operatorname{\mathbf{dom}} f$, $x \neq y$, $0 < \theta < 1$

Extended-value extension

extended-value extension \tilde{f} of f is

$$\tilde{f}(x) = f(x), \quad x \in \operatorname{dom} f, \qquad \tilde{f}(x) = \infty, \quad x \not\in \operatorname{dom} f$$

often simplifies notation; for example, the condition

$$0 \le \theta \le 1 \quad \Longrightarrow \quad \tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in $\mathbf{R} \cup \{\infty\}$), means the same as the two conditions

- $\operatorname{dom} f$ is convex
- for $x, y \in \operatorname{\mathbf{dom}} f$,

$$0 \le \theta \le 1 \quad \Longrightarrow \quad f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

First-order condition

f is **differentiable** if $\operatorname{dom} f$ is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \operatorname{dom} f$

first-order approximation of f is global underestimator

Second-order conditions

f is twice differentiable if dom f is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

2nd-order conditions: for twice differentiable f with convex domain

• f is convex if and only if

$$\nabla^2 f(x) \succeq 0$$
 for all $x \in \operatorname{\mathbf{dom}} f$

• if $\nabla^2 f(x) \succ 0$ for all $x \in \operatorname{dom} f$, then f is strictly convex

Examples on R

convex:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- exponential: e^{ax} , for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^p$ on \mathbf{R} , for $p \ge 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

concave:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

affine functions are convex and concave; all norms are convex

examples on \mathbb{R}^n

- affine function $f(x) = a^T x + b$
- norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_{\infty} = \max_k |x_k|$

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

• affine function

$$f(X) = \mathbf{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

• spectral (maximum singular value) norm

$$f(X) = \|X\|_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

Examples

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ (with $P \in \mathbf{S}^n$)

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

convex if $P \succeq 0$

least-squares objective: $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^T (Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

quadratic-over-linear: $f(x,y) = x^2/y$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

 ${\rm convex}\;{\rm for}\;y>0$

log-sum-exp: $f(x) = \log \sum_{k=1}^{n} \exp x_k$ is convex

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^T z} \operatorname{diag}(z) - \frac{1}{(\mathbf{1}^T z)^2} z z^T \qquad (z_k = \exp x_k)$$

to show $\nabla^2 f(x) \succeq 0$, we must verify that $v^T \nabla^2 f(x) v \ge 0$ for all v:

$$v^T \nabla^2 f(x) v = \frac{(\sum_k z_k v_k^2) (\sum_k z_k) - (\sum_k v_k z_k)^2}{(\sum_k z_k)^2} \ge 0$$

since $(\sum_k v_k z_k)^2 \le (\sum_k z_k v_k^2) (\sum_k z_k)$ (from Cauchy-Schwarz inequality)

geometric mean: $f(x) = (\prod_{k=1}^{n} x_k)^{1/n}$ on \mathbb{R}^n_{++} is concave (similar proof as for log-sum-exp)

Restriction of a convex function to a line

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if and only if the function $g: \mathbf{R} \to \mathbf{R}$,

$$g(t) = f(x + tv), \qquad \operatorname{dom} g = \{t \mid x + tv \in \operatorname{dom} f\}$$

is convex (in t) for any $x \in \operatorname{dom} f$, $v \in \mathbb{R}^n$

can check convexity of f by checking convexity of functions of one variable example. $f : \mathbf{S}^n \to \mathbf{R}$ with $f(X) = \log \det X$, $\operatorname{dom} f = \mathbf{S}_{++}^n$

$$g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})$$

= $\log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i)$

where λ_i are the eigenvalues of $X^{-1/2}VX^{-1/2}$

g is concave in t (for any choice of $X \succ 0$, V); hence f is concave

Epigraph and sublevel set

 α -sublevel set of $f : \mathbb{R}^n \to \mathbb{R}$:

$$C_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}$$

sublevel sets of convex functions are convex (converse is false) epigraph of $f : \mathbb{R}^n \to \mathbb{R}$:

$$epi f = \{(x,t) \in \mathbf{R}^{n+1} \mid x \in \operatorname{dom} f, \ f(x) \le t\}$$

f is convex if and only if epi f is a convex set

Operations that preserve convexity

practical methods for establishing convexity of a function

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals) composition with affine function: f(Ax + b) is convex if f is convex

examples

• log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$$

• (any) norm of affine function: f(x) = ||Ax + b||

Pointwise maximum

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

examples

- piecewise-linear function: $f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$ is convex
- sum of r largest components of $x \in \mathbf{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex $(x_{[i]} \text{ is } i \text{th largest component of } x)$ proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

Pointwise supremum

examples

is convex

- support function of a set C: $S_C(x) = \sup_{y \in C} y^T x$ is convex
- distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} \|x - y\|$$

• maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^n$,

$$\lambda_{\max}(X) = \sup_{\|y\|_2=1} y^T X y$$

Composition with scalar functions

composition of $g : \mathbf{R}^n \to \mathbf{R}$ and $h : \mathbf{R} \to \mathbf{R}$:

$$f(x) = h(g(x))$$

f is convex if $\begin{array}{c} g \text{ convex}, \ h \text{ convex}, \ \tilde{h} \text{ nondecreasing} \\ g \text{ concave}, \ h \text{ convex}, \ \tilde{h} \text{ nonincreasing} \end{array}$

• proof (for
$$n = 1$$
, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

• note: monotonicity must hold for extended-value extension \tilde{h}

examples

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive

Vector composition

composition of $g: \mathbf{R}^n \to \mathbf{R}^k$ and $h: \mathbf{R}^k \to \mathbf{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

f is convex if $\begin{array}{c} g_i \text{ convex}, \ h \text{ convex}, \ \tilde{h} \text{ nondecreasing in each argument} \\ g_i \text{ concave}, \ h \text{ convex}, \ \tilde{h} \text{ nonincreasing in each argument} \end{array}$

proof (for n = 1, differentiable g, h)

$$f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)$$

examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex

Minimization

if f(x,y) is convex in (x,y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

examples

•
$$f(x,y) = x^T A x + 2x^T B y + y^T C y$$
 with

$$\left[\begin{array}{cc} A & B \\ B^T & C \end{array}\right] \succeq 0, \qquad C \succ 0$$

minimizing over y gives $g(x) = \inf_y f(x,y) = x^T (A - BC^{-1}B^T) x$

g is convex, hence Schur complement $A - BC^{-1}B^T \succeq 0$

• distance to a set: $\operatorname{dist}(x, S) = \inf_{y \in S} ||x - y||$ is convex if S is convex

The conjugate function

the **conjugate** of a function f is

- f^* is convex (even if f is not)
- will be useful in chapter 5

examples

• negative logarithm $f(x) = -\log x$

$$\begin{array}{lll} f^*(y) &=& \sup_{x>0} (xy + \log x) \\ &=& \left\{ \begin{array}{ll} -1 - \log(-y) & y < 0 \\ \infty & & \text{otherwise} \end{array} \right. \end{array}$$

- strictly convex quadratic $f(x) = (1/2) x^T Q x$ with $Q \in \mathbf{S}_{++}^n$

$$f^*(y) = \sup_x (y^T x - (1/2)x^T Q x)$$
$$= \frac{1}{2} y^T Q^{-1} y$$

Quasiconvex functions

 $f: \mathbf{R}^n \to \mathbf{R}$ is quasiconvex if $\mathbf{dom} f$ is convex and the sublevel sets

```
S_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}
```

are convex for all $\boldsymbol{\alpha}$

- f is quasiconcave if -f is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave

Examples

- $\sqrt{|x|}$ is quasiconvex on **R**
- $\operatorname{ceil}(x) = \inf\{z \in \mathbf{Z} \mid z \ge x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbf{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbf{R}^2_{++}
- linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d}, \qquad \text{dom} f = \{x \mid c^T x + d > 0\}$$

is quasilinear

• distance ratio

$$f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \qquad \text{dom} \, f = \{x \mid \|x - a\|_2 \le \|x - b\|_2\}$$

is quasiconvex

Log-concave and log-convex functions

a positive function f is log-concave if $\log f$ is concave:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1 - \theta}$$
 for $0 \le \theta \le 1$

f is log-convex if $\log f$ is convex

- powers: x^a on \mathbf{R}_{++} is log-convex for $a \leq 0$, log-concave for $a \geq 0$
- many common probability densities are log-concave, *e.g.*, normal:

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1}(x-\bar{x})}$$

• cumulative Gaussian distribution function Φ is log-concave

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} \, du$$

example: yield function

$$Y(x) = \mathbf{prob}(x + w \in S)$$

- $x \in \mathbf{R}^n$: nominal parameter values for product
- $w \in \mathbf{R}^n$: random variations of parameters in manufactured product
- S: set of acceptable values

if ${\cal S}$ is convex and w has a log-concave pdf, then

- Y is log-concave
- yield regions $\{x \mid Y(x) \ge \alpha\}$ are convex