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Reading:	2.1	– 2.3	and	2.6.1
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Dual cones and generalized inequalities

dual cone of a cone K:

K∗ = {y | yTx ≥ 0 for all x ∈ K}

examples

• K = Rn
+: K

∗ = Rn
+

• K = Sn
+: K

∗ = Sn
+

• K = {(x, t) | ∥x∥2 ≤ t}: K∗ = {(x, t) | ∥x∥2 ≤ t}

• K = {(x, t) | ∥x∥1 ≤ t}: K∗ = {(x, t) | ∥x∥∞ ≤ t}

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

y ≽K∗ 0 ⇐⇒ yTx ≥ 0 for all x ≽K 0

Convex sets 2–21
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2 Convex sets

PSfrag replacements

K
K∗

If K is a halfspace, K = {x | vT x ≥ 0}, the dual cone is the ray

K∗ = {tv | t ≥ 0}.

If K = R2, the dual cone is K∗ = {0}. If K is a line {tv | t ∈ R} through the origin,
the dual cone is the line perpendicular to v

K∗ = {y | vT y = 0}.

(c) See part (a).

(d) K must be closed convex and pointed, and have nonempty interior. From part (a),
this means K can be expressed as

K = {(r cosφ, r sinφ) | r ≥ 0,α ≤ φ ≤ β}

where 0 < β − α < 180◦.

x ≼K y means y ∈ x + K.

2.30 Properties of generalized inequalities. Prove the properties of (nonstrict and strict) gen-
eralized inequalities listed in §2.4.1.
Solution.

Properties of generalized inequalities.

(a) ≼K is preserved under addition. If y − x ∈ K and v − u ∈ K, where K is a convex
cone, then the conic combination (y − x) + (v − u) ∈ K, i.e., x + u ≼K y + v.

(b) ≼K is transitive. If y − x ∈ K and z − y ∈ K then the conic combination (y − x) +
(z − y) = z − x ∈ K, i.e., x ≼K z.

(c) ≼K is preserved under nonnegative scaling. Follows from the fact that K is a cone.

(d) ≼K is reflexive. Any cone contains the origin.

(e) ≼K is antisymmetric. If y − x ∈ K and x − y ∈ K, then y − x = 0 because K is
pointed.

(f) ≼K is preserved under limits. If yi−xi ∈ K and K is closed, then limi→∞(yi−xi) ∈
K.
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Reading:	3.1-3.5	
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Quasiconvex functions

f : Rn → R is quasiconvex if dom f is convex and the sublevel sets

Sα = {x ∈ dom f | f(x) ≤ α}

are convex for all α

α

β

a b c

• f is quasiconcave if −f is quasiconvex

• f is quasilinear if it is quasiconvex and quasiconcave

Convex functions 3–23
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Examples

•
√

|x| is quasiconvex on R

• ceil(x) = inf{z ∈ Z | z ≥ x} is quasilinear

• log x is quasilinear on R++

• f(x1, x2) = x1x2 is quasiconcave on R2
++

• linear-fractional function

f(x) =
aTx+ b

cTx+ d
, dom f = {x | cTx+ d > 0}

is quasilinear

• distance ratio

f(x) =
∥x− a∥2
∥x− b∥2

, dom f = {x | ∥x− a∥2 ≤ ∥x− b∥2}

is quasiconvex

Convex functions 3–24
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Log-concave and log-convex functions

a positive function f is log-concave if log f is concave:

f(θx+ (1− θ)y) ≥ f(x)θf(y)1−θ for 0 ≤ θ ≤ 1

f is log-convex if log f is convex

• powers: xa on R++ is log-convex for a ≤ 0, log-concave for a ≥ 0

• many common probability densities are log-concave, e.g., normal:

f(x) =
1

√

(2π)n detΣ
e−

1
2(x−x̄)TΣ−1(x−x̄)

• cumulative Gaussian distribution function Φ is log-concave

Φ(x) =
1√
2π

∫ x

−∞
e−u2/2 du

Convex functions 3–27
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example: yield function

Y (x) = prob(x+ w ∈ S)

• x ∈ Rn: nominal parameter values for product

• w ∈ Rn: random variations of parameters in manufactured product

• S: set of acceptable values

if S is convex and w has a log-concave pdf, then

• Y is log-concave

• yield regions {x | Y (x) ≥ α} are convex

Convex functions 3–30


