Applied Convex Optimization, EE4530, 2015
 Homework Set 5

Exercise 1 [2pt.]

Solve Exercise 5.30 of Boyd, Vandenberghe, CO.
Exercise 2. [2pt.]
Consider the problem

$$
\underset{\mathbf{x}}{\operatorname{minimize}} f(\mathbf{x}) \quad \text { subject to } g(\mathbf{x}) \leq 0, \mathbf{x} \in X
$$

where $\mathbf{x} \in \mathbf{R}^{n}, f: \mathbf{R}^{n} \rightarrow \mathbf{R}, g: \mathbf{R}^{n} \rightarrow \mathbf{R}$, and X is a compact set. Call f^{*} the infimum of the primal problem, and q^{*} the supremum of the dual problem.
(a) When is the problem convex?
(b) Show that the dual function $q(\lambda)$ of the problem is

$$
q(\lambda)=\min _{\mathbf{x} \in X}\{f(\mathbf{x})+\lambda g(\mathbf{x})\}
$$

Show that its supremum q^{*} is a lower bound for the infimum f^{*} (weak duality). When does $q^{*}=f^{*}$?
(c) In the convex case, by leveraging Danskin's Theorem (you can find it on wikipedia, or in Proposition B. 25 of Bertsekas, Nonlinear Programming) show that the sub-differential set of $q(\lambda)$ is

$$
\operatorname{conv}\left\{g\left(\mathbf{x}^{*}(\lambda)\right)\right\}
$$

where conv represents the convex hull, while $\mathbf{x}^{*}(\lambda)$ is any optimizer of

$$
\min _{\mathbf{x} \in X}\{f(\mathbf{x})+\lambda g(\mathbf{x})\}
$$

(d) Apart from convexity, under which conditions on f, g, and X, the dual function $q(\lambda)$ is differentiable?
(e) Under the condition of (d) devise a gradient method to find q^{*} (aka, to solve the dual problem). You may consider using a projected gradient method (as explained in the Notes, pages 14-15).

Exercise 3. [3pt.]

Consider the convex problem

$$
\underset{\mathbf{x} \in[0,1]^{10}}{\operatorname{minimimize}} \sum_{i=1}^{10} \sigma_{i} \log \left(1+x_{i}\right) \quad \text { subject to } \quad \sum_{i=1}^{10} x_{i} \leq 1,
$$

where σ_{i} is drawn from a uniform distribution in $[-1,0]$.
(a) Argue that Slater's condition holds.
(b) Show that the Lagragian $L(\mathbf{x}, \lambda)$ is separable in \mathbf{x} and so it is the dual function. I.e., show that

$$
q(\lambda)=\sum_{i=1}^{10} q_{i}(\lambda)
$$

for certain local dual functions $q_{i}(\lambda)$.
(c) (Matlab) For a given random instance of the primal problem, solve the dual problem with the gradient method you have devised in Exercise 2. Compare the q^{*} with the f^{*} you can obtain by solving the primal problem via Yalmip/SeDuMi (or CVX).

Exercise 4. [3pt.]

(Matlab) By using Yalmip/SeDuMi (or CVX) extract both the primal \mathbf{x}^{*} and the dual λ^{*} of the convex problem in Exercise 3. Compare them with the ones you can obtain with your gradient method. Plot the quantities $\left\|\mathbf{x}[k]-\mathbf{x}^{*}\right\|$ and $\left\|\lambda[k]-\lambda^{*}\right\|$ w.r.t. the iteration k of your gradient scheme and comment on the convergence.

