Applied Convex Optimization, EE4530, 2015 Homework Set 5

Homework Set 5

Exercise 1 [2pt.] Solve Exercise 5.30 of Boyd, Vandenberghe, CO.

Exercise 2. [2pt.] Consider the problem

minimize $f(\mathbf{x})$ subject to $g(\mathbf{x}) \le 0, \mathbf{x} \in X$,

where $\mathbf{x} \in \mathbf{R}^n$, $f : \mathbf{R}^n \to \mathbf{R}$, $g : \mathbf{R}^n \to \mathbf{R}$, and X is a compact set. Call f^* the infimum of the primal problem, and q^* the supremum of the dual problem.

- (a) When is the problem convex?
- (b) Show that the dual function $q(\lambda)$ of the problem is

$$q(\lambda) = \min_{\mathbf{x} \in X} \{ f(\mathbf{x}) + \lambda g(\mathbf{x}) \}.$$

Show that its supremum q^* is a lower bound for the infimum f^* (weak duality). When does $q^* = f^*$?

(c) In the convex case, by leveraging Danskin's Theorem (you can find it on wikipedia, or in Proposition B.25 of Bertsekas, *Nonlinear Programming*) show that the sub-differential set of $q(\lambda)$ is

$$\operatorname{conv}\{g(\mathbf{x}^*(\lambda))\},\$$

where conv represents the convex hull, while $\mathbf{x}^*(\lambda)$ is any optimizer of

$$\min_{\mathbf{x} \in \mathbf{Y}} \{ f(\mathbf{x}) + \lambda g(\mathbf{x}) \}.$$

- (d) Apart from convexity, under which conditions on f, g, and X, the dual function $q(\lambda)$ is differentiable?
- (e) Under the condition of (d) devise a gradient method to find q^* (aka, to solve the dual problem). You may consider using a projected gradient method (as explained in the Notes, pages 14-15).

Exercise 3. [3pt.]

Consider the convex problem

$$\underset{\mathbf{x}\in[0,1]^{10}}{\text{minimize}} \sum_{i=1}^{10} \sigma_i \log(1+x_i) \quad \text{subject to} \quad \sum_{i=1}^{10} x_i \le 1,$$

where σ_i is drawn from a uniform distribution in [-1, 0].

- (a) Argue that Slater's condition holds.
- (b) Show that the Lagragian $L(\mathbf{x}, \lambda)$ is separable in \mathbf{x} and so it is the dual function. I.e., show that

$$q(\lambda) = \sum_{i=1}^{10} q_i(\lambda),$$

for certain local dual functions $q_i(\lambda)$.

(c) (Matlab) For a given random instance of the primal problem, solve the dual problem with the gradient method you have devised in Exercise 2. Compare the q^* with the f^* you can obtain by solving the primal problem via Yalmip/SeDuMi (or CVX).

Exercise 4. [3pt.]

(Matlab) By using Yalmip/SeDuMi (or CVX) extract both the primal \mathbf{x}^* and the dual λ^* of the convex problem in Exercise 3. Compare them with the ones you can obtain with your gradient method. Plot the quantities $\|\mathbf{x}[k] - \mathbf{x}^*\|$ and $\|\lambda[k] - \lambda^*\|$ w.r.t. the iteration k of your gradient scheme and comment on the convergence.