Applied Convex Optimization, EE4530, 2015 Homework Set 1

Exercise 1. [0pt., but if wrong or not done -2pt.]

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a sufficiently smooth function (that is, f can be derived an arbitrary number of times).

- (a) For the case n = 2, consider a function $f(\mathbf{x})$, where \mathbf{x} is a vector with two real components x_1 and x_2 : compute the first, second, and third order derivatives of f with respect to \mathbf{x} ;
- (b) generalize the previous results for generic n;
- (c) applied the previous results to $f(\mathbf{x}) = \sin(x_1) + \cos(x_1x_2) \tan(x_1)\exp(x_3)$.

Exercise 2. [3pt.]

- (a) Find all local minima of the 2-dimensional function $f(x, y) = \frac{1}{2}x^2 + x \cos y$;
- (b) Find the rectangular parallelepiped of unit volume that has the minimum surfact area. *Hint*: By eliminating one of the dimensions, show that the problem is equivalent to the minimization over x > 0 and y > 0 of

$$f(x,y) = xy + \frac{1}{x} + \frac{1}{y}.$$
 (1)

Exercise 3. [3pt.]

Suppose f is quadratic and of the form $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{Q}\mathbf{x} - \mathbf{b}^T \mathbf{x}$ where **Q** is positive definite and symmetric.

(a) Show that the Lipschitz condition $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \leq L \|\mathbf{x} - \mathbf{y}\|$ is satisfied with L equal to the maximal eigenvalue of \mathbf{Q} .

Hint: Use the fact that for positive definite matrices $\|\mathbf{Q}(\mathbf{x}-\mathbf{y})\| \leq \lambda_{\max}(\mathbf{Q}) \|\mathbf{x}-\mathbf{y}\|$, where $\lambda_{\max}(\mathbf{Q})$ is the maximal eigenvalue of \mathbf{Q} .

(b) Consider the gradient method $\mathbf{x}[k+1] = \mathbf{x}[k] - \alpha \mathbf{D} \nabla f(\mathbf{x}[k])$, where **D** is positive definite and symmetric. Show that the method converges to $\mathbf{x}^* = \mathbf{Q}^{-1}\mathbf{b}$ for every starting point $\mathbf{x}[0]$ if and only if $\alpha \in (0, 2/\bar{L})$, where \bar{L} is the maximum eigenvalue of $\mathbf{D}^{1/2}\mathbf{Q}\mathbf{D}^{1/2}$.

Hint: Write $f(\mathbf{x}[k+1])$ in terms of $f(\mathbf{x}[k])$ by using a Taylor expansion, and show that if and only if $\alpha \in (0, 2/\overline{L})$ then the sequence $\{f(x[k])\}$ is monotonically decreasing. Find the limit point of such a sequence and prove its uniqueness.

Exercise 4. [4pt.]

(Matlab) It is given the function,

$$f(x_1, x_2) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2$$

- (a) Plot the function. Is it convex?;
- (b) Find a minimum by programming in Matlab a gradient method. Is it the global minimum? (Can you find the global minimum analytically?);
- (c) Find a minimum by programming in Matlab a Newton's method. Is it the global minimum?;
- (d) Find different local solutions by changing the initial conditions. Is the gradient method faster or slower to converge w.r.t. the Newton method? (Plot convergence w.r.t. iterations).
- (e) Compare your programs with the Matlab function *fminunc*.