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Open book. Copies of the book and the course slides allowed. No other tools except a
basic pocket calculator permitted.

Answer in English. Make clear in your answer how you reach the final result; the road to
the answer is very important. Write your name and student number on each sheet.

Hint: Avoid losing too much time on detailed calculations, write down the general ap-
proach first.

Question 1 (10 points)

For each of the following sets or functions, explain if it is convex, concave, or neither convex
nor concave. Prove it (by using the definition or some of the basic rules we have encountered
in the course).

(a) f(x) = exp(|x3|) with domf = R;

(b) f(X) = det(X), with X ∈ Sn. (Hint: use the definition of convexity.)

(c) The set S = {s ∈ Rn|f(y) ≥ f(x) + s⊤(y − x)}. Which set is it? (Hint: use the
definition of convexity.)

(d) f(x) = − log(min{−(x2) + 1,−(x− 1)2 + 1}) with domf = [0, 1];

(e) f(x) = infz(
∑n

i=1 xiz
2
i ) with x, z ∈ Rn.

(f) Consider f(x) = 1
2∥b − Ax∥22 − γ∥x∥22, with A ∈ Rm×n, x ∈ Rn. For which conditions

on A and γ is the function f(x) convex in Rn?

(g) Sketch the set C = {x ∈ R2| trace(A(x− 1)(x− 1)⊤) ≤ 1
⋂

x1 = x2} with

A =

[
1 0
0 2

]
.

Is it convex (by inspection of your drawing)? (Hint: recall the cyclic property trace(ABC) =
trace(BCA) and trace(a) = a if a scalar.)

Solution

(a) It is convex. A way to show it is through the composition rule.



(b) Neither convex nor concave. To see that it is not convex, pick two elements X and Y
of the domain, such that X = Diag([1l 0n−l]) and the matrix Y = I − X; i.e., X is
the diagonal matrix with the first l diagonal entries equal to 1, and Y is the diagonal
matrix with the last n− l diagonal entries equal to 1. For any θ ∈ (0, 1), it holds:

det(θX + (1− θ)Y ) ≥ θ det(X) + (1− θ) det(Y ) = 0. (1)

Hence the function is not convex.

To see that is not concave, consider now the diagonal matrix X = Diag([−1 0n−1]) and
the diagonal matrix Y = X + I. For any θ ∈ (0, 1), it holds:

det(θX + (1− θ)Y ) ≤ θ det(X) + (1− θ) det(Y ) = 0. (2)

Hence the function is not concave.

(c) It is the subdifferential set, which is always convex. To prove it, we need to show that
θs1 + (1− θ)s2 ∈ S, for any s1, s2 ∈ S and θ ∈ (0, 1).

f(x) + (θs1 + (1− θ)s2)
⊤(y − x) (3)

= θ(f(x) + s⊤1 (y − x)) + (1− θ)(f(x) + s⊤2 (y − x)) (4)

≤ θf(y) + (1− θ)f(y) (5)

= f(y) (6)

(d) It is convex. It is the composition of the pointwise minimum of concave functions (i.e.
concave) with the negative logarithm (convex and non-increasing). According to the
composition rule, this is convex.

(e) It is concave. It is the infimum of linear (hence concave) functions, indexed by the
variable z, over the variable x.

(f) For γ ≤ 0 and for any A.

(g) It is convex. It is the intersection between an ellipse centered at the point (1, 1) and
the line bisecting the first and the third quadrant; both sets are convex and hence their
intersection.
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Question 2 (10 points)

Consider the optimization problem

minimize
x

f0(x) (7)

subject to x ≤ 0,

with x ∈ Rn and f0(x) a convex function.

(a) Approximate the optimization problem by an unconstrained problem using the logarith-
mic barrier function. You can set the approximation parameter to t = 1 for simplicity.

(b) Compute the gradient and Hessian of the new objective function as a function of the
gradient and Hessian of f0(x).

Assume now that f0(x) = xTx + 2 · 1Tx + n, where 1 is the n-dimensional vector of all
ones.

(c) What is the solution for x of the original problem (7) and why? Is the solution for x of
the approximate (log-barrier) problem larger or smaller if you consider a single entry?
Explain also why.

(d) Plug in the gradient and Hessian of f0(x) to update the results of (b). Write down the
update equations for the gradient descent method and the Newton descent method of
the approximate (log-barrier) problem. Assume no line search is considered.

(e) Assume x = −2 · 1 is selected as initial point, with 1 again the n-dimensional vector of
all ones. Is it then possible for the gradient descent method and the Newton descent
method of (d) to obtain the same updates? If so, under what condition of the step
sizes?

(f) Next to the log-barrier method, can you think of another iterative method to solve this
optimization problem? Work out this method for the considered problem.

Solution

(a) The new problem is

minimize
x

f0(x)−
n∑

i=1

log(−xi).

(b) Note that in this case, we have

fi(x) = xi = eTi x,

where ei is the i-th canonical vector. The gradient and Hessian are then given by

∇f(x) = ∇f0(x)−
n∑

i=1

1

xi
ei = ∇f0(x)− [1/x1, 1/x2, . . . , 1/xn]

T ,

∇2f(x) = ∇2f0(x) +
n∑

i=1

1

x2i
eie

T
i = ∇2f0(x) + diag(1/x21, 1/x

2
2, . . . , 1/x

2
n).
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(c) The objective can be written as f0(x) = (x+1)T (x+1) and the solution of the original
problem is thus given by x = −1. Clearly the constraint is satisfied. For the approximate
problem, the solution per entry is smaller since the gradient of the new objective function
in x = −1 is 1 for every entry.

(d) The gradient and Hessian of the new objective function are given by

∇f(x) = 2(x+ 1)− [1/x1, 1/x2, . . . , 1/xn]
T ,

∇2f(x) = 2I + diag[1/x21, 1/x
2
2, . . . , 1/x

2
n].

The gradient descent method is given by

x(k+1) = x(k) − tGD,k∇f(x(k)) = x(k) − tGD,k{2(x(k) +1)− [1/x
(k)
1 , 1/x

(k)
2 , . . . , 1/x(k)n ]T },

with step size tGD,k. The Newton descent method by

x(k+1) = x(k) − tHD,k[∇2f(x(k))]−1∇f(x(k))

= x(k) − tHD,k{2I + diag[1/(x
(k)
1 )2, 1/(x

(k)
2 )2, . . . , 1/(x(k)n )2]}−1

· {2(x(k) + 1)− [1/x
(k)
1 , 1/x

(k)
2 , . . . , 1/x(k)n ]T },

with step size tHD,k.

(e) Because the initial point has the same entries, after every update, both the gradient
and Newton descent method will lead to a new solution with the same entries, which

we can denote as α(k), i.e., α(k) = x
(k)
i , ∀i. The Hessian in every step is thus given by

∇2f(x(k)) = [2 + 1/(α(k))2]I. And as a consequence, the two methods are equal when

tGD,k = tHD,k[2 + 1/(α(k))2]−1.

(f) We can consider a projected gradient descent method. Starting from x(0), the algorithm
computes for k = 0, 1, . . . :

x̃(k+1) = x(k) − t∇f0(x
(k)) = x(k) − t2(x(k) + 1),

x
(k+1)
i = min{0, x̃(k+1)

i }, ∀i.
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Question 3 (10 points)

Consider a linear program of the form

minimize
x

cTx (8)

subject to Ax ⪯ b,

where c, x ∈ Rn, A ∈ Rm×n and b ∈ Rm.
Let us further assume that b can be modeled as

b(u) = b0 +Bu, (9)

with b0 ∈ Rm, B ∈ Rm×p, and u some p-dimensional variable. You can think of Bu as the
deviation of b around its nominal value b0.

Let us first assume that u is a deterministic unknown value constrained to a ball of radius
1, i.e., ∥u∥22 ≤ 1. In other words, we have two unknown variables now, x and u.

(a) Based on (8) and (9) as well as the fact that ∥u∥22 ≤ 1, write down the new problem in
both x and u. Is this problem convex?

(b) Write down the Lagragian function and the KKT conditions of the problem in (a).

(c) Derive the dual problem of the problem in (a).

(d) Is there strong duality? Explain clearly why or why not.

Solution

(a) The new problem is given by

minimize
x,u

cTx

subject to Ax−Bu− b0 ⪯ 0

subject to uTu− 1 ≤ 0.

This problem is convex since first of all the objective function is linear and hence convex.
Second, the inequality constraint functions are either linear or quadratic with a positive
semidefinite Hessian (I in this case), which all are convex functions.

(b) The Lagrangian function is given by

L(x, u, ν, λ) = cTx+ νT (Ax−Bu− b0) + λ(uTu− 1)

= λuTu− νTBu+ (cT + νTA)x− νT b0 − λ,

where ν ⪰ 0 and λ ≥ 0. The KKT conditions can be written as

1. Ax−Bu− b0 ⪯ 0, uTu− 1 ≤ 0

2. ν ⪰ 0, λ ≥ 0

3. νi(a
T
i x− bTi u− b0,i) = 0, ∀i, λ(uTu− 1) = 0
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4. c+AT ν = 0, 2λu−BT ν = 0

(c) The dual function is given by

g(ν, λ) = min
x,u

L(x, u, ν, λ) = min
x,u

{λuTu− νTBu+ (cT + νTA)x− νT b0 − λ}.

The Lagrangian is linear in x and quadratic in u so the dual function is given by

g(ν, λ) =

{
− 1

4λ
νTBBT ν − νT b0 − λ if cT + νTA = 0

−∞ if cT + νTA ̸= 0
.

The dual problem becomes

maximize
ν,λ

− 1

4λ
νTBBT ν − νT b0 − λ

subject to cT + νTA = 0, ν ⪰ 0, λ ≥ 0.

(d) It is clear that it is always possible to find a u for which ∥u∥2 < 1. Take for instance
u = 0. Then the question is whether we can find an x for which Ax − b0 ≺ 0. Every
inequality aTi x − b0,i < 0 forms an open half plane, so all constraints together form an
intersection of open half planes. Only in some very exceptional cases this intersection
can be empty without the constraint set being empty (for instance if aj = −ai and
b0,j = −b0,i for some i and j). But in general the intersection is not empty. So Slater’s
condition is generally satisfied and we have strong duality.
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Question 4 (10 points)

As in Question 3, let us consider the linear program (8) as well as the model (9).
This time we assume that u is known but random. More specifically, we assume that u

has a specific distribution over U = [−1, 1]p = {u | ∥u∥∞ ≤ 1}. We can then solve (8) for
many different realizations of u, all leading to different solutions x. The resulting mapping
from u into x(u) is called the optimal policy, since it gives the optimal variable x for each
deviation u. When there is not enough time to find this optimal policy, we seek a suboptimal
policy. Here we will focus on finding a suboptimal affine policy

xaff(u) = x0 +Ku,

with x0 ∈ Rn and K ∈ Rn×p. If we can estimate x0 and K in advance, evaluating the
new policy is very simple (matrix multiplication and addition). We will choose x0 and K in
order to minimize the expected value of the objective, while insisting that for any value of u,
feasibility is maintained:

minimize
x0,K

E{cTxaff(u)} (10)

subject to Axaff(u) ⪯ b(u), ∀u ∈ U ,

with b(u) as in (9). The expectation in the objective is over u, and the set of constraints
guarantees feasibility.

(a) Work out the expected value in the objective value of (10).

(b) Note that because of u ∈ U , problem (10) has an infinite number of m-dimensional
constraints. Turn this infinite number of constraints into a finite number of constraints.
To do that, look at the m dimensions separately and make use of the property

aTu ≤ b, ∀u ∈ U ⇔ max
u∈U

{aTu} ≤ b.

(Hint: observe the relation of the latter maximum with the dual norm.)

(c) Write down the new problem that is equivalent to (10) but has no expectations and no
infinite number of constraints.

(d) Turn the problem of (c) into a linear program.

Solution

(a) The expected value can easily be written as

E{cTxaff(u)} = E{cT (x0 +Ku)} = cTx0.

(b) Writing one of the dimensions separately, we obtain the constraints

aTi x0 + aTi Ku ≤ b0,i + bTi u, ∀u ∈ U ,

where aTi is the ith row of A and bTi is the ith row of B. This can be rewritten as

aTi x0 − b0,i + (KTai − bi)
Tu ≤ 0, ∀u ∈ U .

7



Applying the provided trick, this infinite number of constraints can also be replaced by

aTi x0 − b0,i +max
u∈U

{(KTai − bi)
Tu} ≤ 0.

Since u ∈ [−1, 1]p it is intuitively clear that this maximum is given by the sum of the
absolute values of the entries of KTai − bi, i.e., the 1-norm of KTai − bi. Similarly, we
see that the maximum is equal to the dual norm of the ∞-norm, which is the 1-norm.
So the infinite number of constraints can be replaced by the single constraint

aTi x0 − b0,i + ∥KTai − bi∥1 ≤ 0.

(c) So the new problem becomes

minimize
x0,K

cTx0

subject to aTi x0 − b0,i + ∥KTai − bi∥1 ≤ 0, ∀i.

(d) To turn this into an LP, we introduce the new variables ti,j = kTj ai − bi,j , where kj is
the jth column of the matrix K and bi,j is the jth entry of the vector bi. Then the
problem can be written as

minimize
x0,K,{ti,j}

cTx0

subject to aTi x0 − b0,i +

p∑
j=1

ti,j ≤ 0, ∀i

ti,j = |kTj ai − bi,j |, ∀i, j.

This last constraint can be replaced by forcing ti,j to be larger than both kTj ai−bi,j and

−kTj ai+ bi,j so that it will always be larger than the positive value. The first constraint

will then push ti,j to be as small as possible and hence ti,j has to be equal to |kTj ai−bi,j |.
So the final equivalent LP is given by

minimize
x0,K,{ti,j}

cTx0

subject to aTi x0 − b0,i +

p∑
j=1

ti,j ≤ 0, ∀i

ti,j ≥ kTj ai − bi,j , ∀i, j
ti,j ≥ −kTj ai + bi,j , ∀i, j.
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