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Block 1 (13:30-15:00)
Open book, strictly timed take-home exam. (Electronic) copies of the book and the

course slides allowed. No other tools except a basic pocket calculator permitted.
Upload answers during 14:55–15:05

This block consists of three questions (25 points); more than usual, and this will be taken
into account during grading. Answer in English. Make clear in your answer how you reach
the final result; the road to the answer is very important. Write your name and student
number on each sheet.

Hint: Avoid losing too much time on detailed calculations, write down the general ap-
proach first.

1 Question 1 (9 points)

For each of the following functions, explain if it is convex, concave, or neither convex nor
concave. Prove it (by using the definition or some of the basic rules we have encountered in
the course).

(a) f(x) = ‖x‖1/2 with domf = Rn;

(b) f(x) =
√
‖x‖2 with domf = Rn;

(c) f(x) = −maxj
√
xj with domf = Rn;

(d) f(x) = −mini a
T
i x with domf = Rn;

(e) f(X) = λmin(X) with λmin(·) indicating the minimum eigenvalue and domf = Sn.

(f) Consider f(x) = 1
2‖Ax − b‖

2
2 + γ‖x‖2p, with A ∈ Rm×n, x ∈ Rn and γ ∈ R. For which

conditions on A, γ and p is the function f(x) convex in Rn?

(g) Consider the set C = {x ∈ R2|x>Px ≤ 1} for some P ∈ Sn++.

1) Define B = {x ∈ R2|‖x‖1 ≤ 1}. Sketch the set D = C \ B, with P = I identity
matrix. Is the set D convex in R2? Is it convex on the positive part of R2, i.e.
x � 0? (Don’t prove it, just draw your conclusion by inspection of your sketch)

2) Define C1 = C with P = I, and C2 = C with P =

[
1 0
0 4

]
. Sketch the set C1

⋂
C2: is

it convex in R2? (Don’t prove it, just draw your conclusion by inspection of your
sketch)



Solution

(a) Neither convex nor concave. For 0 < p < 1 it is not a norm, does not satisfy the triangle
inequality.

(b) Neither convex nor concave. Notice here that the domain is all RN . As analogy consider
f(x) =

√
|x|, for x ∈ R.

(c) Neither convex nor concave. It is the pointwise maximum of concave functions.

(d) It is convex. It is the pointwise minimum of concave functions (linear functions are
either convex and concave), with switched sign.

(e) It is concave. The infimum of any family of linear functions is concave.

(f) For γ ≥ 0 and p ≥ 1.

(g.1) No it is not convex. It is the set difference between a unit norm `2 ball and the unit `1
ball. It is convex in R2

+.

(g.2) Yes, it is the intersection of the unit Euclidean norm ball and an ellipsoid with semi
axis 1 and 1

2 .
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2 Question 2 (8 points)

Consider the function

f (x1, x2) = 2x21 + 6x22 + 2x1x2 + 2x1 + 3x2 + 3.

(a) Write this function in the form

f(x) =
1

2
x>Px+ bx+ c,

Is this function convex or not? Why?

(b) Derive the steepest descent direction related to the norm ‖x‖P . To solve this you need
to minimize vT∇f(x) subject to ‖v‖P = 1 using the Lagrangian. Give all steps of the
derivation.

(c) Consider a descent algorithm based on the direction derived in (b). To which type of
descent algorithm does this correspond?

Consider now a regularized version of the above function with an `1 term, i.e., consider:

min
x

1

2
x>Px+ bx+ c+ λ‖x‖1

(d) What is the regularization term used for? Write the optimality condition(s).

(e) Compute and plot the subdifferential of the second term of the function, for a fixed λ.
It is enough to compute the subgradient with respect to only a single scalar variable xj

(f) Perform one iteration of subgradient descent starting from the point (1,1). Does the
function value decrease or not by taking such a step? Do you expect it always to
decrease?

Solution

(a) P =

[
4 2
2 12

]
. The function is convex because P is positive definite.

(b) By forming the Lagrangian and using the KKT conditions, we find the normalized

steepest descent direction v? = − P−1∇f(x)
‖∇f(x)‖P−1

. Then, the steepest descent direction (i.e.

the un-normalized) is ∆xsd = −P−1∇f(x).

(c) Because P is also the Hessian of the function f(x), this descent algorithm corresponds
to the Newton method.

(d) It is used to promote sparsity of the solution. The condition is 0 ∈ ∇f(x) + λ∂‖x‖1.

(e) [figure] The subdifferential is the set ∂|xi| =


λ xi > 0
−λ xi < 0

[−λ, λ] xi = 0
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(f) Subgradient descent is not a descent method, thus the cost function value could increase.
To perform one iteration of subgradient descent, you need to compute a subgradient
of the `1 norm (at this point you should already have computed the gradient of the
differentiable part of the function). Remember that h(x) = ‖x‖1 =

∑
i |xi|︸︷︷︸
hi(x)

. Then

exploiting the summation rule ∂h(x) = ∂
∑

i hi(x) =
∑

i ∂hi(x) we have:∑
i:xi 6=0

sgn (xi) ei ∈ ∂h(x).

Remember that the variable is a vector, and as such is the (sub)gradient, reason why
the basis vectors ei are in the above expression.

A subgradient iteration is then:

x1 = x0 − αg0,

with g0 ∈ ∇f(x0) + ∂h(x0).
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3 Question 3 (8 Points)

Consider the following problem:

minimize
x

1

2

m∑
i=1

(a>i x− bi)2 (1)

where ai ∈ Rn, x ∈ Rn and bi ∈ R.

(a) Is the problem convex? Argue why and find the optimal solution x?.

Consider now a regularized version of the above problem:

minimize
x

1

2

m∑
i=1

(a>i x− bi)2 + λ

n∑
i=1

x2i (2)

(b) Is the problem convex? Argue why and find the optimal solution x?.

(c) What can you say about the difference or similarity between the solutions of problems
(1) and (2)? When can the second formulation be of help?

Another variant of the problem is by considering:

minimize
x

1

2

m∑
i=1

(a>i x− bi)2 subject to
n∑

i=1

x2i ≤ 1 (3)

(d) Which category of canonical optimization problems does the one above belong to (e.g.
linear, etc.)? Sketch some level curves and the constraint set of this general category of
problems.

(e) Write the update formula related to problem (3) in case of projected gradient descent.

(f) Write the KKT conditions and the dual problem for (3). Can problems (2) and (3) have
the same solution? If yes, when? If not, why?

Solution

(a) Yes. The cost function can be written in vector notation as 1
2‖Ax − b‖2, i.e., in a

least square formulation. Expanding the function, we have 1
2 [x>A>Ax− 2b>Ax+ b>b].

Because A>A � 0, the function is convex. The optimal solution is found by setting
∇f(x) = 0, that is x? = A†b, where A† = (A>A)−1A>.

(b) Yes, as long as λ ≥ 0. In this case, the optimal solution is given by x? = (A>A +
2λI)−1A>b.

(c) When the matrix to invert, i.e. A>A is ill-conditioned, i.e., it has a high condition
number or it is nearly singular. By adding the positive definite matrix 2λI, with λ ≥ 0,
the overall inverse benefits.

(d) QCQP. Either the level curves of the function and the constraint set are ellipsoids.
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(e) Is it a descent step and a projection in the Euclidean unit norm ball. So if the new
point is inside the ball, nothing changes, while if it is outside of the ball, the projection
is found by scaling the vector for its `2 norm.

(f) Problem (2) is a particular case of (3). They can be equivalent for a particular choice of
λ. In particular, by obtaining the optimal λ? from the dual problem of (3) and plugging
it into (2), the two problems are equivalent, i.e. they have the same solution x?.
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