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Block 2 (10:50-12:20)
Open book, strictly timed take-home exam. (Electronic) copies of the book and the

course slides allowed. No other tools except a basic pocket calculator permitted.
Upload answers during 12:15–12:25

This block consists of three questions (25 points); more than usual, and this will be taken
into account during grading. Answer in English. Make clear in your answer how you reach
the final result; the road to the answer is very important. Write your name and student
number on each sheet.

Hint: Avoid losing too much time on detailed calculations, write down the general ap-
proach first.

Question 4 (7 points)

Consider the function f(x, y) = x2 + x cos y with x, y ∈ R.

(a) Compute the gradient of f(x, y).

(b) Compute the Hessian of f(x, y).

(c) Is the function convex? Why or why not? Try to find the easiest way to prove this.

(d) In the point x = 0, y = −π/2, mathematically describe the set of all possible descent
directions. Illustrate this also in a 2D plot. Which is the best descent direction?

(e) In the point x = 0, y = −π/2, is the Hessian positive definite, negative definite or
neither? Can you relate this outcome to your plot (d)? How is such a point called?

Solution

(a) The gradient is

∇f(x, y) =

[
2x+ cos y
−x sin y

]
(b) The Hessian is

∇2f(x, y) =

[
2 − sin y

− sin y −x cos y

]
(c) The function is not convex. The easiest way to see this is to derive the determinant of

the Hessian which is given by −2x cos y − sin2 y. If this determinant is negative, the
matrix cannot be positive definite and hence the function is not convex. It is clear that
−2x cos y − sin2 y can be negative. Take for instance x = 1 and y = 0.



(d) The gradient in this point is ∇f(0,−π/2) = [0, 0]T . All directions [x, y]T for which
[0, 0][x, y]T = 0 is negative is a descent direction. So no direction is a descent direction
(if you say all directions are descent directions, that is also fine). So there is also no
best direction. The point that was picked was a bit unfortunate and that is why the
answer was kind of trivial. A plot would not reveal much in this case.

(e) The Hessian in this point is

∇2f(0,−π/2) =

[
2 1
1 0

]
.

The determinant is negative and hence there is one positive and negative eigenvalue.
So the matrix is neither positive nor negative definite. This means the point is a saddle
point. This can also be observed from (d), since the gradient is zero.
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Question 5 (9 Points)

Consider an imaging problem where we want to retrieve a series of images from a series
of measurements. Every time instant k, we observe an m-dimensional measurement vector
y(k) ∈ Rm, which depends on the n-dimensional image vector x(k) ∈ Rn as

y(k) = Ax(k) + n(k),

where A ∈ Rm×n is the m×n measurement matrix and n(k) ∈ Rm is an m-dimensional noise
vector. Given A, the goal is to recover x(k) from y(k) and this for all time instants k.

The standard approach to tackle this would be to solve the following least squares problem
for every time instant k:

minimize
x(k)

‖Ax(k)− y(k)‖22

(a) In most imaging problems, we have m < n and A has rank m. For this scenario, explain
why this problem has multiple solutions. Mathematically describe the set of solutions.

(b) Which solution in the set described in (a) would you prefer? And why?

From the above, it clearly would be advantageous to exploit some constraints to narrow
down the possible solutions. Therefore, it is often assumed that the image x(k) is sparse and
that the sparsity pattern does not change over time k (note that the values of x(k) can still
change over time k). In order to exploit this knowledge, it is beneficial to write the data
model jointly for all time indices k = 1, 2, . . . ,K as

Y = AX +N,

where Y = [y(1), . . . , y(K)], X = [x(1), . . . x(K)] and N = [n(1), . . . , n(K)]. So the knowledge
we have about the images is that the matrix X is sparse in the row dimension, i.e., only a
few rows are non-zero. In other words, denoting the rows of X by the K-dimensional vectors
x̃(i) ∈ RK , with i = 1, 2, . . . , n, only a few vectors x̃(i) will be non-zero. Assuming the upper
bound on the number of non-zero rows is S, the imaging problem can thus be formulated as

minimize
X

‖Y −AX‖2F

subject to # nonzero x̃(i) ≤ S.

(c) Mathematically formulate the constraint described in the above problem. To do this,
make use of the n-dimensional vector χ = [‖x̃(1)‖2, . . . , ‖x̃(n)‖2]T .

(d) Is this problem convex? Why or why not? If not, can you relax the constraint such
that it becomes a convex problem?

(e) Derive a first-order method to solve the convex problem in (d). To do this, first write
the problem as an unconstrained problem ‖Y −AX‖2F + λf(X), where f(X) is related
to the constraint in (d) and λ is considered fixed.
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Solution

(a) The matrix A has a right null space of dimension n−m which can be characterized by
a set of n−m orthonormal basis vectors stacked in Vn ∈ Rn×(n−m). In other words, we
have that AVn = 0. These can be computed from the SVD of A for instance. So if x∗(k)
is a solution to the problem, then it is clear that also x∗(k) + Vna is a solution where
a ∈ Rn−m is an arbitrary vector. As a result, there is an infinite amount of solutions.
A possible expression for x∗(k) is given by the pseudo inverse of A times y(k), i.e.,

x∗(k) = A†y(k) = AT (AAT )−1y(k).

(b) From all the solutions, usually the solution with the minimal norm is preferred. From
(a), we know that the set of solutions is given by {AT (AAT )−1y(k) + Vna|a ∈ Rn−m}.
Since Vn is orthogonal to A, the two terms describing this set are always orthogonal.
So it is not possible to further minimize the norm of the first term. So the minimal
norm solution is given by x∗(k) = AT (AAT )−1y(k). Note that this is the standard least
squares solution.

(c) The constraint can easily be formulated using the zero norm of χ. More specifically, the
constraint can mathematically be expressed as ‖χ‖0 ≤ S.

(d) This constraint is not convex because of the composition rule and the fact that the
zero norm is not convex. We can relax this zero norm to a 1-norm, leading to ‖χ‖1 =∑n

i=1 ‖x̃(i)‖2 ≤ S. This is sometimes called the 1-2 norm of the matrix X. Note in this
context that we might have to scale the upper bound S depending on the energy of the
row vectors.

(e) We can first write the problem as a LASSO type of problem where we bring the con-
straint into the cost function. This leads to

minimize
X

‖Y −AX‖2F + λ
n∑

i=1

‖x̃(i)‖2.

This becomes an unconstrained nondifferentiable convex optimization problem. So a
simple subgradient descent algorithm can be considered. The gradient of the first term
is well-known and this is given by 2ATAX − 2ATY . A subgradient for the second term
w.r.t. x̃(i) is given by gi = x̃(i)/‖x̃(i)‖2 when x̃(i) 6= 0 and given by gi = 0 when
x̃(i) = 0. So for the full matrix X this subgradient is G = [g1, . . . , gn]T = diag†(χ)X
where the pseudo-inverse (·)† only inverts the non-zero values and keeps the zero values.
So the update equation becomes

X(k+1) = X(k) − αk[2ATAX(k) − 2ATY + λdiag†(χ(k))X(k)].

The step size αk can follow some of the well-known step size rules.
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Question 6 (9 points)

Consider the problem

minimize f0(x)

subject to fi(x) ≤ 0 holds for at least k values of i,

with variable x ∈ Rn, where the objective f0 and the constraint functions fi, i = 1, . . . ,m
(with m ≥ k), are convex. We require that only k of the m constraints hold, instead of all
m of them. In general this is a hard combinatorial problem, which requires solving all

(
m
k

)
convex problems obtained by choosing subsets of k constraints, and selecting the one with
the smallest objective value. In this question, we explore some ways to relax or restrict this
problem into a convex problem.

(a) Can you think of a way to mathematically formulate the constraint as a single inequality
by making use of the sign function, where sign(u) = 1 if u > 0 and sign(u) = −1 if
u ≤ 0?

(b) Is this a convex constraint? If not, can you relax the constraint to a convex one?

(c) The relaxation in (b) is often too harsh. A more commonly used constraint is

m∑
i=1

(1 + yfi(x))+ ≤ m− k

with (u)+ = max{0, u} and the new variable y > 0. Show that this constraint guarantees
that fi(x) ≤ 0 holds for at least k values of i.
Hint: For each u ∈ R, you can use that (1 + yu)+ ≥ 1 when u > 0 and (1 + yu)+ ≥ 0
when u ≤ 0.

Consider now the problem

minimize f0(x)

subject to
m∑
i=1

(1 + yfi(x))+ ≤ m− k

y > 0,

with variables x and y. This is a restriction of the original problem. In other words, if (x, y)
is feasible for it, then x is feasible for the original problem. The goal is now to formulate this
problem as a convex optimization problem

(d) As a first step, consider the epigraph form of the functions (1 +yfi(x))+ by introducing
the new variables ti. This allows you to rewrite the constraint

∑m
i=1(1+yfi(x))+ ≤ m−k

as a set of new constraints. Write down the resulting problem.

(e) Now, replace the variable y by z = 1/y and the variables ti by ui = (ti − 1)z. Show
that the overal problem in the variables x, z and ui then is convex.
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Solution

(a) Based on the definition of the sign function, it is clear that the constraint is equivalent
to saying that sign(fi(x)) = −1 for at least k values of i or equivalently sign(fi(x)) = 1
for at most m− k values of i. This can be mathematically formulated as

m∑
i=1

1 + sign(fi(x)) ≤ 2(m− k).

(b) Because of the sign function, this clearly is not a convex constraint. There are multiple
ways to relax the function to a convex one. One option is to simply relax 1 + sign(u)
by (u)+ [see (c) for a definition]. This will then lead to

m∑
i=1

(fi(x))+ ≤ 2(m− k).

Or alternatively, 1 + sign(u) can be relaxed as (1 + u)+, leading to

m∑
i=1

(1 + fi(x))+ ≤ 2(m− k).

(c) To show that
∑m

i=1(1 + yfi(x))+ ≤ m − k implies that fi(x) ≤ 0 holds for at least k
values of i, we will use a proof by contradiction. In other words, we will show that if
fi(x) ≤ 0 holds for less than k values of i (or fi(x) > 0 holds for more than m−k values
of i), then

∑m
i=1(1 + yfi(x))+ > m− k.

To prove this, suppose for simplicity that fi(x) > 0 for i = 1, . . . , l and fi(x) ≤ 0 for
i = l + 1, . . . ,m, with l > m− k. Then using the hint it is clear that

m∑
i=1

(1 + yfi(x))+ =
l∑

i=1

(1 + yfi(x))+ +
m∑

i=l+1

(1 + yfi(x))+ ≥ l + 0 > m− k.

(d) We first transform this problem into its epigraph form by introducing the additional
variables ti for i = 1, . . . ,m. This leads to

minimize f0(x)

subject to

m∑
i=1

ti ≤ m− k

ti ≥ 0

ti ≥ 1 + yfi(x)

y > 0,
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(e) Introducing the change of variables z = 1/y and ui = (ti − 1)z we obtain the problem

minimize f0(x)

subject to kz +

m∑
i=1

ui ≤ 0

ui + z ≥ 0

ui − fi(x) ≥ 0

z > 0.

Note that the last constraint can be replaced by z ≥ ε with ε a small postive error in
order to obtain all regular inequalities. All constraints are now clearly convex in the
variables and hence the overall problem is convex.
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