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Block 1 (09:00-10:30)
Open book, strictly timed take-home exam. (Electronic) copies of the book and the

course slides allowed. No other tools except a basic pocket calculator permitted.
Upload answers during 10:25–10:35

This block consists of three questions (25 points); more than usual, and this will be taken
into account during grading. Answer in English. Make clear in your answer how you reach
the final result; the road to the answer is very important. Write your name and student
number on each sheet.

Hint: Avoid losing too much time on detailed calculations, write down the general ap-
proach first.

Question 1 (8 Points)

For each of the following set or function, establish if it is convex, concave or neither convex
nor concave.

(a) f(X) = ‖tr(AX)Bz − z‖22, where tr(·) denotes the trace operator, A,B,X ∈ Rn and
z ∈ Rn

(b) f(x) = eαx
>Ax, with A positive definite and α > 0.

(c) f(x) = h(Ax+ b) where h(·) : Rn → R is a convex function, A ∈ Rm×n and b ∈ Rm.

(d) The set C = {X ∈ Rn|X =
∑M

i=1 uiu
>
i , for some ui ∈ Rn and M ≥ 0}. Do you

recognize which set is it?

(e) The function f(y) = sup
x

(y>x− f(x)), with f : Rn → R.

(f) The set C = {x = [x1, x2]
> ∈ R2| ‖x− 1‖22 ≤ 1, x2 ≥ |x1|}

(g) f(x) = mini {exi}

(h) The set C = {x ∈ Rn|
√
‖x‖2 ≤ 1}.

Solution

(a) It is convex, since it is the composition of a norm with an affine function on X. Indeed
tr(AX) =

∑
i,j AijXij .



(b) It is convex. It is the composition of the function g(z) = eαz, which is convex and
monotonically increasing over z ∈ R and the function h(x) = αx>Ax is convex over
x ∈ Rn.

(c) By definition, h(θx+ (1− θ)y) ≤ θh(x) + (1− θ)h(y) ∀ x, y and θ ∈ [0, 1]. Then:

f(θx+ (1− θ)y) = h(A(θx+ (1− θ)y) + b)

= h(θAx+ (1− θ)Ay + b)

= h(θ(Ax+ b) + (1− θ)(Ay + b))

≤ θh(Ax+ b) + (1− θ)h(Ay + b)

= θf(x) + (1− θ)f(y)

Simply saying that a convex function of an affine function is convex is also a correct
answer.

(d) It is the set of positive semidefinite matrices, hence it is a convex set.

(e) It is the conjugate function, which is convex, since for a fixed x, the function y>x−f(x)
is convex (affine) in y. Thus, for the pointwise supremum operation, the overall function
is convex.

(e) It is convex, since it is the intersection between the unit ball centered in the point (1, 1)
and the values of x2 that are higher than the absolute value function.

(f) Neither convex nor concave. It is the pointwise minimum of convex function.

(g) It is convex. It is the α-sublevel set of the quasi-convex function
√
‖x‖2, for α = 1.

Alternatively, it is also easy to see that the set is just a 2-norm ball of radius 1.
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Question 2 (9 points)

Consider the following graph filter design problem:

argmin
h0,...,hK

max
n
|ĥn −

K∑
k=0

hkλ
k
n| (1)

where ĥ0, . . . , ĥN are given scalar coefficients, λ0, . . . , λN are the eigenvalues of a given graph,
and h0, . . . , hK are the scalar unknown filter coefficients.

Define the vectors ĥ := [ĥ1, . . . , ĥN ]> and h := [h0, . . . , hK ]> and consider the N × (K + 1)
Vandermonde matrix

V =

 λ01 λ11 · · · λK1
...

...
. . .

...
λ0N λ1N · · · λKN


(a) Rewrite problem (1) in vector form in an∞-norm formulation, using V , ĥ and h. Detail

the steps to reach such formulation.

(b) Is the problem convex? Why or why not?

(c) Consider solving problem (1) subject to the constraint
∑K

k=0 h
2
k = 1. Is the problem

convex? Why or why not? If not, relax the problem to a convex problem.

(d) Write problem (1) in epigraph form including the relaxed version of the constraint in
question (c).

(e) Implement an iterative algorithm to solve it.

Solution

(a) It can be equivalently rewritten as:

argmin
h
‖ĥ− V h‖∞ (2)

(b) It is convex, since it is the composition of a norm and an affine function of the unknown
vector h.

(c) It is not convex, since the equality constraint is not affine. It can be relaxed to∑K
k=0 h

2
k ≤ 1

(d) Problem (1) can be rewritten as

argmin
t,h

t

s.t. − t1 � ĥ− V h � t1
‖h‖22 ≤ 1.

3



(e) Note that both h and t are unknown variables and they can be grouped into one unknown
x = [hT , t]T . The problem can then be rewritten as

argmin
x

cTx

s.t. aTi x+ ĥi � 0, i = 0, . . . , N

bTi x− ĥi � 0, i = 0, . . . , N

xTPx ≤ 1,

where c = [0, . . . , 0, 1]T , aTi is the ith row of A = [−V,−1], bTi is the ith row of B =
[V,−1], and

P =

[
I 0
0 0

]
.

A gradient descent algorithm is then easy to derive as

x(k+1) = x(k) − αkg(k),

with αk an appropriate stepsize. As long as the constraints are satisfied, we take g(k) = c.
If not, pick randomly one of the constraints that is not satisfied and perform a gradient
descent step. If the constraint with ai is not satisfied, take g(k) = ai. If the constraint
with bi is not satisfied, take g(k) = bi. Finally, if the last constraint is not satisfied, you
can either project or take g(k) = 2Px.
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Question 3 (8 points)

Consider the convex optimization problem

minimize aTx+
m∑
i=1

exp yi

subject to x � 0

Bx = y

with variables x ∈ Rn and y ∈ Rm. The matrix B ∈ Rm×n is a wide matrix, i.e., m < n, and
has full row rank.

(a) Derive the Lagrangian of this problem. Include the domain of the different primal and
dual variables.

(b) Give the KKT conditions of this problem.

(c) Derive the dual function of this problem.

(d) What is the dual problem in its simplest form?

(e) Does strong duality hold or not? Explain.

Solution

(a) Assuming functions are taken element wise, the Lagrangian of this problem is

L(x, y, λ, ν) = aTx+ 1T exp y + λTx+ νT (Bx− y),

where x ∈ Rn, y ∈ Rm, λ ∈ Rn+ and ν ∈ Rm.

(b) The first set of KKT conditions corresponds to the primal constraints. The second one
is λ � 0. The third set of KKT conditions corresponds to the complementary slackness
conditions given by λixi = 0 for i = 1, 2, . . . , n. And finally, the fourth set of KKT
conditions equates the gradient of the Lagrangian with respect to x and y to zero:

∂L

∂x
= a+ λ+BT ν = 0 ⇒ λ = −a−BT ν, (3)

∂L

∂y
= exp y − ν = 0 ⇒ y = log ν. (4)

(c) It is clear that the minimum of the Lagrangian is −∞ when (3) is not satisfied. If (3)
is satisfied, the linear term in x of the Lagrangian is always 0 and the minimum for y
is reached at (4). This gives the following dual function:

g(λ, ν) =

{
1T ν − νT log ν if λ = −a−BT ν
−∞ otherwise
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(d) For the dual problem we have to maximize this dual function under the constraint that
λ � 0. So we can easily eliminate λ in the dual problem, leading to

maximize
ν

g(ν),

where

g(ν) =

{
1T ν − νT log ν if a+BT ν � 0
−∞ otherwise

So we obtain the dual problem

maximize
ν

1T ν − νT log ν

subject to a+BT ν � 0

(e) Since the problem is convex, we can check Slater’s condition. If that condition is satis-
fied, there is strong duality. This means that there should exist an x ≺ 0 that is feasible.
Since the cost function has no domain restrictions, and since for any x we can always
find a y for which Bx = y, any x ≺ 0 is feasible and hence the problem always has
strong duality.

6


