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Open book: copies of the book and the course slides allowed, as well as a one page cheat
sheet. No other tools except a basic pocket calculator permitted.

Answer in English. Make clear in your answer how you reach the final result; the road to
the answer is very important. Write your name and student number on each sheet and use
one sheet per question.

Hint: Avoid losing too much time on detailed calculations, write down the general ap-
proach first.

Question 1 (10 points)

For each of the following sets or functions, explain if it is convex, concave, or neither convex
nor concave. Prove it (by using the definition or some of the basic rules we have encountered
in the course).

(a) The set

D = {(y, b) | (y − c)TA−1(y − c) ≤ b} (1)

with fixed c and A and where A ∈ Sn
++. Make a sketch of this set!

(b) The function

f(y) =

√√√√ k∑
i=1

( |a+ biyi|) 2 (2)

(c) A set of length N sequences defining a bounded discrete cosine function:

S = {x ∈ RN | c(k) =
N∑

n=1

xn cos(
π

N
(n+

1

2
)k) < M for k = 1, ..., N} (3)

(d) The following set in R2:

C = {y +Ax | ||x||2 ≤ 1} (4)

with A =

[
1/t 2/t
2/t 4/t

]
and an arbitrary fixed y and fixed t > 0.



(e) The function f(x) = min{f1(x), f2(x)} on domf = R++, where

f1(x) = −3x21 + 4x1x2 − 5x22

f2(x) = log(x1) + log(x2)

(f) The set of Hankel matrices of dimension n. Recall that the Hankel matrix created from
a sequence a := [a1, ...an] is defined as :

H(a) :=


a1 a2 · · · an
a2 a3 · · · an+1
...

... · · ·
...

an an+1 · · · a2n−1


(g) The function

f(x) = ||x||1/k + ||x||k with domf = Rn

for an arbitrary positive integer k.

Solution

(a) It is an elliptic cone (i.e. a cone with elliptic cross-section), therefore, convex.

(b) This is the l2-norm of an affine function of y, hence convex.

(c) For a fixed k,
∑N

n=1 xn cos(
π
N (n + 1

2)k) is an affine function, therefore, c(k) < M is a
halfspace. The set S, therefore, is the intersection of N halfspaces and hence convex.

(d) It is a degenerate ellipsoid (A is positive semi-definite, but singular), which is convex.

(e) The function f1(x) is a quadratic function with a negative definite Hessian, hence con-
cave. f2(x) is concave as well. Therefore, it is a pointwise minimum of concave functions,
hence concave.

(f) It is easy to prove using the definition. Given a Hankel matrix based on two sequences
a and b. The convex combination of their entries, i.e. ci = θai + (1− θ)bi will preserve
the Hankel structure.

(g) Neither convex or concave. The p-norm is only convex for p ≥ 1, so both functions in
the sum cannot be convex at the same time.

Question 2 (10 points)

Consider the following optimization problem in the domain domf = {x | x ∈ R2, x2 > 0}:

min
x

f(x) =
3x21
2x2

(a) What is the optimum value and where is it obtained?
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(b) Sketch the contour plot (i.e sublevel sets) of the function! Indicate the objective function
value at at least 2 contour lines.

Let us solve this optimization problem with a steepest descent method with the quadratic
norm ||x||P = (xTPx)1/2!

(c) Calculate the steepest descent step for P =

[
1/2 0
0 1/2

]
Let us assume that we start at x(0) =

[
1/4 3

]
.

(d) Is it a good idea to use this steepest descent step at this particular point? Why? If not,
what would be a better choice? Hint: Inspect your sketch to answer.

(e) For which choice of P would the steepest descent step be equivalent to the Newton step?
Calculate the Newton step at x(0)!

Solution

(a) The optimum value is 0, obtained at any x1 = 0.

(b)
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(c)

∇sd = −P−1∇f(x)

df

dx1
=

3x1
x2

df

dx2
=

−3x21
2x22

P−1 =

[
2 0
0 2

]
, therefore,

∇sd =
[
6x1
x2

−3x2
1

x2
2

]
(d) As a rule of thumb, if the shape of the norm ball approximates well the sublevel sets, we

can expect a good convergence rate. The chosen P is a circle of radius 1/2. Inspecting
the contour plot, an ellipse with a long vertical axis would be a better choice at this
point.

(e) The Newton step is the steepest descent direction for the local Hessian norm. Therefore,

P = ∇2f(x(0)) =

[ 6
x2

6
−x2

2

−2x1
x2

x2
1

2x2
2

]
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Question 3 (10 points)

Let us consider the problem of minimizing the difference between two quadratic functions
under a lower and upper bound on the norm of the unknown variable. In other words,
consider the problem

min
x

f1(x)− f2(x), s.t. L ≤ ∥x∥ ≤ U, (5)

where fi(x) = xTAix− 2bTi x+ ci, with Ai ∈ Rn×n a symmetric positive semi-definite matrix,
bi ∈ Rn and ci ∈ R.

(a) Is problem (5) convex? Explain also why or why not.

Using the eigenvalue decomposition of Ā = A1−A2, i.e., Ā = Udiag(σ1, σ2, . . . , σn)U
T , where

we assume σ1 ≥ σ2 ≥ · · · ≥ σn, and making the change of variables y = UTx, we can
transform the original problem (5) into

min
y

n∑
i=1

(σiy
2
i − 2b̄iyi) + c̄, s.t. L ≤ ∥y∥ ≤ U, (6)

where b̄ = UT (b1 − b2) and c̄ = c1 − c2.

(b) Prove that in the optimal point y∗ of (6), we have that b̄iy
∗
i ≥ 0 for i = 1, 2, . . . , n. Hint:

Since y∗ = [y∗1, y
∗
2, . . . , y

∗
n]

T is feasible, also y∗flip = [y∗1, . . . , y
∗
k−1,−y∗k, y

∗
k+1, . . . , y

∗
n]

T is
feasible, but it is not necessarily optimal and hence its cost function is larger. Use this
fact to construct the proof.

Using (b), we can make another change of variables

yi = sign(b̄i)
√
zi, i = 1, 2, . . . , n,

where zi ≥ 0, i = 1, 2, . . . , n. This allows us to transform problem (6) into

min
z⪰0

n∑
i=1

(σizi − 2|b̄i|
√
zi) + c̄ s.t. L2 ≤

n∑
i=1

zi ≤ U2. (7)

Note that z ⪰ 0 represents the domain of the cost function.

(c) Is problem (7) convex? Explain also why or why not.

(d) Write down the Lagrangian of (7).

(e) Derive the dual function and formulate the dual problem.

Solution

(a) It is not convex since it is a difference of two convex functions. Also the constraint set
is not a convex set.
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(b) Plugging y∗ and y∗flip into the cost, we obtain

n∑
i=1

(σi(y
∗
i )

2 − 2b̄iy
∗
i ) ≤

n∑
i=1,i ̸=k

(σi(y
∗
i )

2 − 2b̄iy
∗
i ) + σk(−y∗k)

2 + 2b̄ky
∗
k,

which results into
−b̄ky

∗
k ≤ b̄ky

∗
k ⇒ b̄ky

∗
k ≥ 0.

Since we can repeat this for every k, the result holds.

(c) This problem is convex. The domain of the cost function is a convex set. The cost
function is convex in its domain, since it consists of a linear part, which is always convex,
and a weighted sum of negative square roots, which is also convex in the domain of
positive variables. The constraint functions are all linear, so that makes the constraints
also convex.

(d) Using λ1 and λ2 as the dual variables for the lower and upper bound, the Lagrangian
can be written as

L(z, λ) =
n∑

i=1

(σizi − 2|b̄i|
√
zi) + c̄+ λ1

(
L2 −

n∑
i=1

zi

)
+ λ2

(
n∑

i=1

zi − U2

)

=
n∑

i=1

(
(σi − λ1 + λ2)zi − 2|b̄i|

√
zi
)
+ λ1L

2 − λ2U
2 + c̄

(e) Computing the derivative of the Lagrangian with respect to zi and equating to zero, we
obtain

zi =
b̄2i

(σi − λ1 + λ2)2
,

subject to the condition σi−λ1+λ2 ≥ 0. Note that all these conditions for i = 1, 2, . . . , n
together can equivalently be written as the single condition σn −λ1 +λ2 ≥ 0. The dual
function is then given by

g(λ) = inf
z⪰0

L(z, λ) =

 −
n∑

i=1

b̄2i
σi − λ1 + λ2

+ λ1L
2 − λ2U

2 + c̄ if σn − λ1 + λ2 ≥ 0

−∞ otherwise

.

The dual problem then becomes
max
λ⪰0

g(λ),

leading to

max
λ

−
n∑

i=1

b̄2i
σi − λ1 + λ2

+ λ1L
2 − λ2U

2 + c̄ s.t. σn − λ1 + λ2 ≥ 0, λ ⪰ 0.
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Question 4 (10 points)

Consider the following optimization problem:

max
x≺b

n∑
i=1

c2ixi −
n∑

i=1

a2i
bi − xi

. (8)

(a) Is this problem convex, concave, or neither one of the two? Use the second-order
derivative to prove this. Make a sketch of the cost function for n = 1 to corroborate
your answer.

(b) Is the maximum obtained at an x for which xi lies strictly between −∞ and bi? To check
this, derive the limits of the cost for xi → −∞ and xi → bi and draw your conclusion
from these limits.

(c) Write down the update rule of a first-order method to solve (8) where the step size
is determined using line search. What measure do you take to handle the constraint
x ≺ b?

Let us now also add the additional constraint l ≺ x to problem (8), where we implicitly
assume that l ≺ b.

(d) Use the logarithmic barrier function to handle this constraint. How can the new cost
function then be written? Make a sketch of the new cost for n = 1.

(e) For this new problem, write again the update rule of a first-order method where the
step size is determined using line search. Make sure l ≺ x ≺ b in every step of the
algorithm.

Solution

(a) This is a concave problem since the domain is convex and the Hessian is negative definite.
More specifically, if the cost is f(x), the first-order partial derivative is given by

∂f(x)

∂xi
= c2i −

a2i
(bi − xi)2

,

and the second-order partial derivative by

∂2f(x)

∂x2i
= − 2a2i

(bi − xi)3
.

Note that the other second-order partial derivatives are zero, and the Hessian is diagonal.
Since all diagonal elements are negative in the domain x ≺ b, the Hessian is negative
definite.

(b) It is easy to show that both limits are −∞ and thus the maximum must be obtained at
an x for which xi lies strictly between −∞ and bi.
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(c) Using the expression of the derivative derived in (a), we can write the update rule per
entry as

x
(k+1)
i = x

(k)
i + sk

(
c2i −

a2i

(bi − x
(k)
i )2

)
,

where sk is assumed positive since we need to take a step in the direction of the gradient
to maximize the cost. The step size sk is determined using

argmax
sk>0

f(x(k+1)).

Because of the fact that the cost becomes −∞ for xi → bi and the fact that we do a line
search for sk, we don’t need to take any specific action to guarantee that x

(k+1)
i < bi.

(d) Since we are considering a maximization problem, the new cost becomes

max
x≺b

n∑
i=1

c2ixi −
n∑

i=1

a2i
bi − xi

+
1

t

n∑
i=1

log(xi − li).

(e) The update rule per entry now becomes

x
(k+1)
i = x

(k)
i + sk

(
c2i −

a2i

(bi − x
(k)
i )2

+
1

t(x
(k)
i − li)

)
.

The positive step size sk is again determined using

argmax
sk>0

f(x(k+1)).

As before, due to the shape of the cost, and the line search for the step size, we don’t
need to take any special action to guarantee that l ≺ x(k+1) ≺ b.
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