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Open book. Copies of the book and the course slides allowed. No other tools except a
basic pocket calculator permitted.

Answer in English. Make clear in your answer how you reach the final result; the road to
the answer is very important. Write your name and student number on each sheet.

Hint: Avoid losing too much time on detailed calculations, write down the general ap-
proach first.

Question 1 (10 points)

For each of the following sets or functions, explain if it is convex, concave, or neither convex
nor concave. Prove it (by using the definition or some of the basic rules we have encountered
in the course).

(a) The function f(w, x, y, z) = wx+ y2 + z2 with domf = R4. (Hint: The eigenvalues of
a block diagonal matrix are the eigenvalues of each individual block.)

(b) The intersection between the epigraph of f(x) = x2 − 1 and the hypograph of f(x) =
−x2 + 1. Draw a sketch.

(c) The spectraplex S = {X ∈ Sn+|tr(X) = 1}.

(d) The fantope F = {Z ∈ Sn : 0 ⪯ Z ⪯ I, tr(Z) = k}, for some order k > 0.

(e) Consider the function g(y) = supx∈C(y
⊤Ay − f(x)) with x, y ∈ Rn . Under which

conditions on the set C, on the matrix A and on the function f(·) is the function g(y)
convex?

(f) The set V of m× n Vandermonde matrices. Recall that a m× n Vandermonde matrix
is a matrix of the form V = [1 x x2 . . . xn−1], where x ∈ Rm and the power is intended
entry-wise.

(g) The function f(x) = 1/ (x1x2) , where x ∈ R2
++.



Solution

(a) The function is not convex, since its Hessian has eigenvalues {−1,+1, 2} and thus not
positive semidefinite.

(b) It is the intersection of two convex sets, and thus it is convex.

(c) It is convex. It readily follows by applying the definition: given X,Y ∈ S, then tr(θX+
(1− θ)Y ) = θtr(X) + tr(Y )− θtr(Y ) = 1.

(d) It is convex. One way to prove is to recognize that F = {Z ∈ Sn : Z ⪰ 0}∩{Z ∈ Sn : Z ⪯ I}∩
{Z ∈ Sn : tr(Z) = k} is the intersection of linear inequality and equality constraints.

(e) The only requirement for g(y) to be convex is the positive semidefinitedness of matrix
A. Indeed it is the pointwise supremum of a quadratic function in y indexed by x. The
set C and the function f(x) can also be not convex.

(f) It is not convex. To show this, take twom×nVandermonde matricesX = [1 x x2 . . . xn−1]
and Y = [1 y y2 . . . yn−1]. It suffices to show that, for instance, the convex combina-
tion Z = (1/2)X + (1/2)Y is not Vandermonde. The second column of Z is the vector
z = (1/2)x+(1/2)y, and the third column is (1/2)x2+(1/2)y2, which is clearly different
from z2.

(g) It is convex and it can be proved through the second-order condition. The Hessian is:
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Thus the Hessian is PSD and we conclude that f(x) is convex.
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Question 2 (10 points)

Consider the following unconstrained optimization problem:

minimize
x∈R2

f(x) = max
(
(x1 − 1)2 + x22 , (x1 + 1)2 + x22

)
. (2)

(a) Is this objective function convex? Is it differentiable?

(b) Sketch the contour plot of the function! Find a point with more than one subgradient
and indicate at least 2 subgradients in that point on the sketch!

(c) Write down the equations for the basic negative subgradient step and compute x(1) for
x(0) = (0, 2) and a constant step size of α = 1.

(d) Does the objective function decrease?

(e) Is the method in (c) guaranteed to converge to the optimal solution? If not, what can
you do to improve convergence?

Solution

(a) Convex, but not differentiable.

(b) See Figure 1 below.

(c) General subgradient step:
x(k+1) = x(k) − αkg

(k)

Note that f(x) is a pointwise maximum of 2 functions and at x(0) = (0, 2) both functions
achieve the maximum value. Therefore, we can choose any gradient of any of the
2 functions at this point. Let’s choose the gradient of the second function, i.e., let
g(x) = (2x1 + 2, 2x2). Then, our subgradient step is

x(k+1) = x(k) − 1 · (2x1 + 2 , 2x2)

Then,

x(1) = x(0) −
(
2x

(0)
1 + 2 , 2x

(0)
2

)
=

= (0 , 2)− (2 · 0 + 2 , 2 · 2) = (−2 , − 2)

(d) No, the objective function value increases in this case:

f(0) = max
(
(0− 1)2 + 22 , (0 + 1)2 + 22

)
= 5

f(1) = max
(
(−2− 1)2 +−22 , (−2 + 1)2 +−22

)
= 13

(e) It is not. To guarantee convergence, we need to choose a different step size rule, e.g.
the diminishing step size rule.
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Figure 1: Figure 1

Question 3 (8 points)

Suppose we want to solve a set of noisy equations in the form

y = Ax+ e,

where A ∈ Rm×n, y, e ∈ Rm and x ∈ Rn. Here y and A are known, x is unknown, and
e is unknown white Gaussian noise with zero mean and variance σ2. The standard way to
approach this problem is to minimize the least squares cost

∥y −Ax∥2

over x. However, when we have less equations than unknowns, i.e., m < n, we need additional
constraints to find a unique solution. Let us here for instance assume that the sum of the
variables xi is 1 and that all the variables xi are positive.

(a) Formulate the overall problem. Is this problem convex? Why or why not?

(b) Express the Lagrangian and present the KKT conditions for this problem.

(c) Derive the dual function and formulate the dual problem.

(d) Does strong duality always hold for this problem? Why or why not? If not, give a
sufficient condition for strong duality to hold.
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Solution

(a) The overall problem is given by

minimize
x∈Rn

∥y −Ax∥2

subject to 1Tx = 1, x ⪰ 0.

Since the cost function can be written as xTATAx−2xTAT y+yT y, it is quadratic with
a positive semi-definite Hessian. So the cost function is convex. Furthermore, since the
constraint functions are affine, the overall problem is convex.

(b) The Lagrangian is given by

L(x, ν, λ) = xTATAx− 2xTAT y + yT y + ν(1Tx− 1)− λTx

= xTATAx+ xT (ν1− λ− 2AT y) + yT y − ν.

The KKT conditions are

• Primal constraints: 1Tx = 1, x ⪰ 0.

• Dual constraints: λ ⪰ 0.

• Complementary slackness: λixi = 0, ∀ ∈ {1, . . . , n}.
• Vanishing gradient of Laplacian: 2ATAx+ ν1− λ− 2AT y = 0.

(c) The Lagrangian is unbounded below if ATA is rank deficient and ν1−λ−2AT y /∈ R(AT ).
If on the other hand, ν1 − λ − 2AT y ∈ R(AT ), then the solution for minimizing the
Lagrangian is given by

x = −1

2
(ATA)†(ν1− λ− 2AT y),

and plugging this into the Lagrangian we obtain

g(ν, λ) = −1

4
(ν1− λ− 2AT y)T (ATA)†(ν1− λ− 2AT y) + yT y − ν.

The dual problem then becomes

maximize
ν∈R,λ∈Rn

− 1

4
(ν1− λ− 2AT y)T (ATA)†(ν1− λ− 2AT y) + yT y − ν

subject to ν1− λ− 2AT y ∈ R(AT ), λ ⪰ 0.

(d) Strong duality always holds here since we can find a feasible point x ≻ 0 for which
1Tx = 1. Consider for instance xi = 1/n.
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Question 4 (12 points)

Let us explore optimal portfolio selection. Consider an investor who wants to allocate his/her
wealth among n assets. Each one of these assets offers random rates of return {ri}ni=1 with
the following known second-order statistics

E{ri} = r̄i, E{(ri − r̄i)(rj − r̄j)} = Qi,j , ∀ i, j ∈ {1, . . . , n}.

Let us also define the n× 1 mean vector r̄ with [r̄]i = r̄i and the n× n covariance matrix Q
with [Q]i,j = Qi,j . Throughout this question, we assume that Q is invertible, i.e., Q−1 exists.

(a) Consider that xi = [x]i is the amount invested in the ith asset, i.e., x ∈ Rn is the overall
investment vector. Then express the mean, ȳ, and the variance, σ2, of the total return
of the investment, y, as a function of x, r̄ and Q. Hint: The expression of the total
return (investment) is the sum of all the asset returns.

A moderate investor (risk-adverse) usually tends to minimize his/her risk. Therefore, the
investor’s problem becomes one of reducing the variability of his/her return, while guaran-
teeing a given level of expected return, i.e., ȳ = m.

(b) Assuming that the investor possesses a unit of wealth, i.e., 1Tx = 1, write an optimiza-
tion problem that minimizes the risk over x, and guarantees a mean return of m.

(c) Is the optimization problem obtained in (b) convex? Why or why not?

Let us now study how the solution to (b) varies with the mean return m.

(d) Write the Lagrangian for problem (b) and express the optimal investment x∗ using
the first order optimality condition. Hint: First order optimality implies a vanishing
Lagrangian gradient.

(e) Using the constraints of (b) and the expression of x∗ from (d), show that the Lagrange
multipliers are given in the form

λ1 = η1 + ζ1m, (3)

λ2 = η2 + ζ2m. (4)

Hint: There is no need to find the exact expressions for the scalars η1, ζ1, η2, ζ2. You
may also need the expression of the inverse of a 2× 2 matrix:[

a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
(5)

(f) Using the Langrange multipliers expression from (e), show that the risk, as a function
of m, is given by

σ2 = (αm+ β)2 + κ, (6)

where α, β and κ are scalars that depend on Q and r̄. Hint: First show the optimal x
can be written as x∗ = mv + w, for some vectors v and w depending on Q and r̄.

Consider now the case of K-unit-commitment, i.e., a set of K assets are selected and the unit
of wealth is distributed equally among the assets.

(g) Write the new (possibly nonconvex) optimization problem and, if needed, a convex
relaxation for this instance.
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Solution

(a) The total investment is given by

y =

n∑
i=1

rixi = rTx. (7)

Therefore, its mean and variance is given as

ȳ := E{y} =
n∑

i=1

r̄ixi = r̄Tx, (8)

σ2 := E{(y − ȳ)2} = E
{( n∑

i=1

(ri − r̄i)xi

)2}
= xTQx. (9)

(b) The following optimization problem minimizes the risk of the investor and guarantees
a given mean (expected) return

minimize
x∈Rn

xTQx (10)

subject to 1Tx = 1, r̄Tx = m. (11)

(c) The problem is always convex. First, notice that the cost function is a quadratic form
of Q. As Q is a covariance matrix, its positive-definiteness follows directly. Hence, the
cost function is convex. As the equality constraints are affine functions, the convexity
of the feasible region is guaranteed. Thus, the problem is convex.

(d) The Lagrangian of (b) is

L(x, λ1, λ2) = xTQx+ λ1(1
Tx− 1) + λ2(r̄

Tx−m). (12)

The first order optimality condition is

∇xL(x, λ1, λ2) = 0, (13)

which leads to

∇L(x∗, λ1, λ2) = 2Qx∗ + λ11 + λ2r̄ = 0, (14)

and

x∗ = −1

2
Q−1(λ11 + λ2r̄). (15)

(e) Substituting the constraints 1Tx = 1 and r̄Tx = m, we obtain

1Tx∗ = 1 = aλ1 + bλ2 (16)

r̄Tx∗ = m = cλ1 + dλ2, (17)

for some values a, b, c, d. The previous relation leads to the system[
a b
c d

] [
λ1

λ2

]
=

[
1
m

]
, (18)
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which has solution
1

ad− bc

[
d −b
−c a

] [
1
m

]
=

[
λ1

λ2

]
. (19)

Hence, we can express the multipliers as

λ1 = η1 + ζ1m, (20)

λ2 = η2 + ζ2m, (21)

with η1 = d/γ, ζ1 = −bm/γ, η2 = −c/γ and ζ2 = am/γ. Here, γ = 1/(ad− bc).

(f) Recalling the solution for x∗ in terms of the multipliers

x∗ = −1

2
Q−1(λ11 + λ2r̄), (22)

and the expressions for λ1 and λ2, we see that we can express the solution x∗ as

x∗ = mv + w, (23)

for some vectors v and w that depend on r̄ and Q. Hence, substituting this expression
in the cost, we obtain

(mvT + wT )Q(mv + w) = (αm+ β)2 + κ, (24)

for appropriates values of α, β and κ.

(g) This setting can be tackled by considering x as a Boolean variable, i.e., x ∈ {0, 1}n and
modifying the constraint 1Tx = 1 to 1Tx = K, for a given K.

So, we write the new (nonconvex) optimization problem as

minimize
x∈{0,1}n

xTQx (25)

subject to 1Tx = K, r̄Tx = m. (26)

As the optimization variable is Boolean, the problem is nonconvex. A straightforward
way to convexify the problem is to relax x ∈ {0, 1}n to x ∈ [0, 1]n. As the rest of the
contraints are affine and the cost is convex, nothing more has to be done.
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