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Hint: Avoid losing too much time on detailed calculations, write down the general ap-
proach first.

Question 1 (13 points)

For each of the following sets or functions, explain if it is convex, concave, or neither convex
nor concave. Prove it (by using the definition or some of the basic rules we have encountered
in the course).

(a) The function f(x) = ∥x∥p with domf ∈ Rn, for p ≥ 1. Show it only through the
epigraph formulation. (2 points)

(b) The function f(X) = tr(XAX⊤B), with X,A,B ∈ Rn×n, and A,B positive semidefi-
nite. (2 points)
Hint: a PSD matrix Z can be decomposed as Z = Z1/2Z1/2⊤. Rewrite the trace as a
norm.

(c) The binary cross entropy loss function:

f(w) = y log(σ(w⊤x)) + (1− y) log(1− σ(w⊤x))

with w, x ∈ Rn, y ∈ R. The function σ(·) : R → [0, 1] is the sigmoid function, defined
as σ(z) = 1/(1 + e−z). Use the second-order condition. (3 points)
Hint: σ′(z) = σ(z)(1− σ(z))

(d) The set H = {H ∈ Rn×n|H =
∑K

k=0 hkS
k, hk ∈ R} where S is the delay matrix (the

matrix containing 1s below the main diagonal and a 1 on the top-right corner). Do you
know which set does H represent? (1 point)

(e) The set S = {θ||ejθ| = 1} for θ ∈ [0, 2π], where j is the imaginary unit. (1 point)

(f) The set of the gradients of a quadratic function, that is,:

G = {g ∈ RN |g = ∇xx
⊤Ax for all x ∈ RN}

where A ∈ RN×N is negative semidefinite. (2 points)

(g) The set S = {(x, f(x))} for any x ∈ R and f(x) a strictly convex function. (2 points)



Solution

(a) 2p It is convex. We can show this by showing that the epigraph of f is a convex set:

epif = {(x, t) ∈ Rn+1|∥x∥p ≤ t}

Consider two distinct points x̄1 = [x1, t1]
⊤ and x̄2 = [x2, t2]

⊤, both belonging to epif .
We need to show that ∀ θ ∈ [0, 1] the point x̄ := θx̄1 + (1 − θ)x̄2 belongs to epif .
Expanding this expression we have:

x̄ = θx̄1 + (1− θ)x̄2 = [θx1 + (1− θ)x2, θt1 + (1− θ)t2]

and:

∥θx1 + (1− θ)x2∥p ≤ θ∥x1∥p + (1− θ)∥x2∥p ≤ θt1 + (1− θ)t2

from which we conclude that x̄ ∈ epif and that f is convex.

(b) 2p It is convex. One way to show it is by rewriting the function f(·) as

f(X) = tr(XA1/2A1/2X⊤B1/2B1/2) = tr(B1/2XA1/2A1/2X⊤B1/2) = ∥B1/2XA1/2∥2F
which is convex, since it is the composition of a convex function (∥ · ∥2F ) with an affine
function of X.

(c) 3p It is concave. We can prove this by showing that the Hessian ∇2f(w) ⪯ 0, i.e., it is
negative semidefinite. First, we compute the gradient ∇f(w). Denote with z ∈ R the
value z = w⊤x; then we have by the chain rule that:

df

dwj
=

df

dz

dz

dwj
.

The factor dz
dwj

is simply dz
dwj

= xj . The factor df
dz is:

df

dz
= y

σ′(z)

σ(z)
+ (1− y)

−σ′(z)

1− σ(z)

= y
σ(z)(1− σ(z))

σ(z)
+ (1− y)

−(σ(z)(1− σ(z))

1− σ(z)

= y(1− σ(z)) + (1− y)(−σ(z)

= y − σ(z)

So we have
df

dwj
= (y − σ(w⊤x))xj

and the gradient is ∇f(w) = (y − σ(w⊤x))x.

We compute the (jk)th entry of the Hessian through the second-order partial derivative:

df

dwjwk
= −dσ(w⊤x))xj

dwk
(1)

= −dσ(z))

dz

dz

dwk
xj (2)

= −σ(w⊤x)(1− σ(w⊤x))xjxk (3)
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It is then easy to see that:

∇2f(w) = −σ(w⊤x)(1− σ(w⊤x))xx⊤ (4)

which is negative semidefinite, since for any vector y ∈ Rn, we have:

y⊤∇2f(w)y = −σ(w⊤x)(1− σ(w⊤x))y⊤xx⊤y (5)

= −σ(w⊤x)(1− σ(w⊤x))(y⊤x)2 (6)

which is always non-positive since both the terms σ(w⊤x) and (1 − σ(w⊤x)) are non-
negative, and so is their product.

(d) 1p It is a convex set, which can be easily shown by using the definition of convexity of
a set. The set H is the set of circulant matrices.

(e) 1p It is obviously convex, since for any θ it holds |ejθ| = 1.

(f) 2p It is convex. We show this in two ways.

Affine function. Consider the set S = RN , i.e., the set of all Euclidean vectors of
dimension N . Clearly S is convex. We know that the image of a convex set under an
affine function is convex. Since the gradient of a quadratic function is linear (hence
affine) in x, we have that the set of gradients is also a convex set. Formally:

S = RN convex =⇒ f(S) = {f(x) | x ∈ S} convex

where f(S) = {Ax | x ∈ S}
By definition. The set G is the set of vectors

G = {Ax | x ∈ RN}

Taking any two gradients g1 = Ax1 and g2 = Ax2, it holds:

θg1 + (1− θ)g2 = Aθx1 +A(1− θ)x2 = A(θx1 + (1− θ)x2) ∈ G.

Since the vector θx1 + (1− θ)x2 ∈ RN , its gradient belongs to G.

(g) 2p It is not convex. It is the set of points constituting the graph of a function. The only
possible way for the graph of a function to be convex is when the graph is an affine set
(a straight line). But since the function f is strictly convex, it cannot be affine in any
part of its domain.
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Question 2 (9 points)

Assume we are given a dataset of N points D = {x1, . . . , xN}, where xi ∈ Rn. We would like
to reduce the dimensionality of our dataset D (which is now N ×n). To achieve this goal, we
want to project our points into a lower dimensional subspace of dimension d ≪ n, obtaining
a projected dataset Dp = {z1, . . . , zN}, where zi ∈ Rd. For now, we can assume that d = 1,
so that Dp is of dimension N × 1 (every point xi is now described by the scalar zi).

The problem statement now is the following: Find the n×1 projection vector u such that
the variance of the points zi = uTxi which yield Dp is maximized. This way, the diversity of
the points in D is retained as much as possible in Dp. Note that there is a scaling ambiguity
related to u; as a result we will assume that u has unit energy.

(a) Formulate the problem statement as an optimization problem and draw a visual sketch
of the problem considering n = 2. (2 points)

(b) Rewrite the problem in matrix-vector form as a function of Σx, with Σx = 1/N
∑N

i=1(xi−
x)(xi − x)T the (empirical) covariance matrix of the data in D, with x the mean value
x = 1/N

∑N
i=1 xi. Is the problem convex? Why? (2 points)

(c) Given that problem (b) results in a quadratic objective with a unitary ℓ2-norm con-
straint, find the solution of the problem with the KKT conditions. (3 points)

(d) Derive also a projected gradient algorithm to reach this solution. (2 points)

Solution

(a) The projection of a point xi ∈ Rn into the vector u ∈ Rn to obtain the point zi ∈ R
can be computed as x⊤i u, if we consider u to be an orthonormal vector, i.e., ∥u∥ = 1.
Denote with x the mean value x = 1/N

∑N
i=1 xi. It follows that the mean value z is

z =
1

N

N∑
i=1

zi =
1

N
u⊤

N∑
i=1

xi = u⊤x. (7)

The variance of the points {z1, . . . , zN} is 1/N
∑N

i=1(zi− z)2. Since it depends on u, we

have that the function we want to maximize is f(u) = 1/N
∑N

i=1(u
⊤xi − u⊤x)2. Thus

the optimization problem we want to solve is:

u := argmax
u

1

N

N∑
i=1

(
u⊤(xi − x)

)2
(8)

s.t. ∥u∥2 = 1

(b) We can rewrite f(u) as:

f(u) =
1

N

N∑
i=1

u⊤(xi − x)(xi − x)⊤u = u⊤Σxu, (9)
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where Σx = 1/N
∑N

i=1(xi − x)(xi − x)⊤. Problem (8) is then:

u := argmax
u

u⊤Σxu (10)

s.t. ∥u∥2 = 1

which is not convex due to the constraint set being not convex.

(c) Despite the problem being not convex, we know how to find a solution, since it is an
eigenvalue problem. Moreover, in this case, it coincides with the principal component
analysis (PCA) technique by considering only the first principal component. The La-
grangian is:

L(u, λ) = u⊤Σxu− λ(∥u∥22 − 1) (11)

where λ is the Lagrange multiplier associated to the equality constraint. The KKT
conditions are:

• (primal feasibility) ∥u∥22 = 1

• (stationarity) ∇uL(u, λ) = 0 ⇒ 2Σxu− 2λu = 0 ⇒ Σxu = λu

which shows u needs to be an eigenvector of Σx (and λ the associated eigenvalue). Since
we want to maximize f(u), the vector u maximizing f(u) is the eigenvector associated
to the maximum eigenvalue of Σx.

(d) We can applying some projected gradient (ascent) steps. By considering an initial
starting point u(0), the algorithm would have the following iterates for k ≥ 1:

w(k) = u(k−1) + 2αΣxu
(k−1) (12)

u(k) = Proj∥·∥2=1(w
(k)) =

w(k)

∥w(k)∥2
(13)
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Question 3 (8 points)

Assume we have a composition function f(x) = g(h(x)), where h : Rn → R is convex, and
g : R → R is increasing and convex. Let us also assume that all these functions are twice
differentiable.

(a) Is f(x) convex? Why, why not? (1 point)

(b) Let pf∗ and xf∗ be the optimal value and optimal point for the problem minx f(x).
Similarly, let ph∗ and xh∗ be the optimal value and optimal point for the problem
minx h(x). What is the relationship between xh∗ and xf∗? Is pf∗ less than, greater
than, or equal to ph∗? (1 point)

(c) Write down the gradient descent step for minx f(x) and minx h(x). Prove that with
exact line search the iterates are the same. (2 points)

(d) Repeat part (c) for the Newton step. (3 points)

Hint: use the matrix inversion lemma:

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1 , where

A ∈ Rn×n, C ∈ Rk×k, U ∈ Rn×k, V ∈ Rk×n, and in our case k = 1

(e) Are the iterates the same if using backtracking line search? Explain. (1 point)

Solution

(a) 1p Convex: it is a composition of a non-decreasing convex and a convex function.

(b) 1p The optimal points are the same: due to the fact that g is increasing, the composition
function cannot take a smaller value at any other point than at the optimal (minimum)
point of inner function. The optimal values of course can be different, but without
knowing g we cannot tell which is larger.

(c) 2p The gradient step for h(x) is −∇h(x). The gradient step for f(x) is −g′(h(x))∇h(x),
where g′(h(x)), i.e. the first derivative is a positive scalar. Therefore, the gradient step
moves in the same direction in both cases. The exact line search will find the same
optimal point along this search direction, therefore, the iterates are equal.

(d) 3p The Newton step for h(x) is

−∇2h(x)−1∇h(x). (14)

.

The Hessian for f is:

g′′(h(x))∇h(x)∇h(x)T + g′(h(x))∇2h(x) (15)

Therefore, the Newton step for f is (up to a scaling):

−(a∇h(x)∇h(x)T +∇2h(x))−1∇h(x), (16)
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where a = g′′(h(x))/g′(h(x)). Using the matrix inversion lemma, this can be written as

−∇−2h(x)∇h(x)+∇−2h(x)∇h(x)(a−1+∇h(x)T∇−2h(x)∇h(x))−1∇h(x)T∇−2h(x)∇h(x),
(17)

which can be simplified as
(−1 + b)∇−2h(x)∇h(x), (18)

where b = (a−1 + ∇h(x)T∇−2h(x)∇h(x))−1∇h(x)T∇−2h(x)∇h(x). Again, this is a
positive multiple of the Newton step for h, therefore, the iterates are the same.

(e) 1p Backtracking line search starts with a given step size which is iteratively reduced until
a stopping condition is satisfied. As such, it depends on the norm (and not only the
direction) of the search direction. Therefore, the iterates will be different.
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Question 4 (10 points)

Given xj ∈ Rn and yj ∈ {−1, 1}, j = 1, . . . ,m, find the hyperplane aTx+ b = 0, with a ∈ Rn

and b ∈ R, that separates the data points xj with yj = −1 from the data points xj with
yj = 1. To find such a separating hyperplane, the following so-called support vector machine
(SVM) problem can be solved:

(a⋆, b⋆, ϵ⋆) = argmin
a,b,ϵ

1

2
∥a∥2 + c

m∑
j=1

ϵj (19)

subject to yj(a
Txj + b) ≥ 1− ϵj , j = 1, . . . ,m (20)

ϵj ≥ 0, j = 1, . . . ,m (21)

where the variables ϵj are included to accommodate data points xj that are not linearly
separable.

(a) Give the KKT conditions for this problem. (3 points)

(b) Prove that the optimal direction of the hyperplane is given by a∗ =
∑m

j=1 µ
∗
jyjxj where

µ∗ = [µ∗
1, . . . , µ

∗
m]T is the Lagrange multiplier related to (20). (2 points)

(c) Show that the data points xj that are either within the slab or poorly classified corre-
spond to µj = c. (2 points)

(d) Show that µ∗ is obtained by solving

minimize µTQµ− 1Tµ (22)

subject to yTµ = 0 (23)

µj ∈ [0, c], j = 1, . . . ,m (24)

with 1 = (1, . . . , 1)T ∈ Rm, y = (y1, . . . , ym)T ∈ Rm, and Q ∈ Rm×m. Give an
expression of the matrix Q. (3 points)

Solution

(a) The Lagrangian L : Rn ×R×Rm ×Rm associated with the problem is

L(a, b, ϵ, µ, ν) =
1

2
∥a∥22 + c

m∑
j=1

ϵj +
m∑
j=1

µj(1− ϵj − yj(a
Txj + b))−

m∑
j=1

νjϵj .

The KKT conditions are

1− ϵ⋆j − yj(x
T
j a

⋆ + b⋆) ≤ 0 and ϵ⋆j ≥ 0, j = 1, . . . ,m

µ⋆
j ≥ 0 and ν⋆j ≥ 0, j = 1, . . . ,m

µ⋆
j (1− ϵ⋆j − yj(x

T
j a

⋆ + b)) = 0 and ν⋆j ϵ
⋆
j = 0, j = 1, . . . ,m a

0
c1

+

m∑
j=1

µ⋆
j

 −yjxj
−yj
−ej

+
m∑
j=1

ν⋆j

 0
0

−ej

 = 0,

where ej ∈ Rm is the jth column of the identity matrix of size m×m.
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(b) We have

∂L

∂a
= 0 ⇒ a⋆ =

m∑
j=1

µ⋆
jyjxj ;

∂L

∂b
= 0 ⇒ −

m∑
j=1

µjyj = 0

∂L

∂ϵj
= 0 ⇒ µj = c− νj ;

Since νj ≥ 0 and µj ≥ 0, we have µj ∈ [0, c].

(c) For misclassified data points ϵj > 0, then according to the KKT conditions, the corre-
sponding νj = 0. This means µj = c− νj = c.

(d) Using the above expressions in L, and writing the dual problem we obtain µ⋆ by solving

minimize µTQµ− 1Tµ (25)

subject to yTµ = 0

µj ∈ [0, c], j = 1, . . . ,m (26)

where Q = µTdiag(y)XTXdiag(y)µ with X = [x1, . . . , xm].
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