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Open book: copies of the book and the course slides allowed, as well as a one page cheat
sheet. No other tools except a basic pocket calculator permitted.

Answer in English. Make clear in your answer how you reach the final result; the road to
the answer is very important. Write your name and student number on each sheet and use
one sheet per question.

Hint: Avoid losing too much time on detailed calculations, write down the general ap-
proach first.

Question 1 (10 points)

For each of the following sets or functions, explain if it is convex, concave, or neither convex
nor concave. Prove it (by using the definition or some of the basic rules we have encountered
in the course).

(a) The function

f(A) = inf
∥x∥2=1

tr(Axx⊤), (1)

with x ∈ Rn and A ∈ Rn×n not positive semidefinite (PSD)

(b) The function g(x) = x⊤Qx, with Q = [∇2f(a, b, c)]2, where f(a, b, c) : R3 → R is the
determinant of the matrix:

A =

[
a b
b c

]
(2)

for some fixed values a, b, c ∈ R.

(c) The function f(x) = log(|x|) with domf = R

(d) The function f(x) = sup∥y∥2=1{|y⊤Ax|, ∥Ax− y∥22}, for x, y ∈ Rn and A ∈ Rn×n

(e) The function f(x) = x(x−1)···(x−r+1)
r! for r − 1 < x < +∞

(f) The set of Vandermonde matrices of dimension n: V = {V (x) ∈ Rn×n| x ∈ Rn}. A
Vandermonde matrix V with parameter x := [x0, . . . , xn−1]

⊤ ∈ Rn is defined as:

V (x) :=


1 x0 · · · xn−1

0

1 x1 · · · xn−1
1

...
... · · ·

...

1 xn−1 · · · xn−1
n−1


(g) The set E = {(x, ϵ) | x ∈ Rn, ∥Ax− b∥∞ > ϵ}. Which set is it?



Solution

(a) It is the infimum over the variable x of a linear function in A, so it is both convex and
concave.

(b) It is convex due to the positive semidefiniteness ofQ. SinceQ = (∇2f(a, b, c))(∇2f(a, b, c)),
it suffices to note that ∀x ∈ R3 it holds x⊤Qx = ∥∇2f(a, b, c)x∥22 ≥ 0. Another way to
show its convexity is given by computing the Hessian matrix ∇2f(a, b, c), which is an
antidiagonal matrix. When squared, ∇2f(a, b, c) becomes diagonal and it reveals in its
diagonal the eigenvalues of matrix Q, which are all non-negative.

(c) It is neither convex nor concave. It is actually quasi-convex. This can be quickly seen
by inspection.

(d) It is convex, since it is the pointwise supremum of convex functions in x, indexed by y.

(e) It is convex. To show this, we can use the second order condition f ′′(x) ≥ 0 for all
x ∈]r − 1,+∞]. The function f(x) is the product of r linear terms in x. Then, by
the product rule, its derivative f ′ is the sum of r terms, each one consisting of r − 1
products. For instance, one term is (x− 1) · · · (x− r+1), corresponding to the factor x
missing. The second derivative f ′′ is then the sum of an even greater number of terms,
each one consisting of r− 2 products, with factors linear in x. This can be for instance
(x− 2) · · · (x− r + 1), with the factors x and (x− 1) removed. Since x > r − 1, all the
products are positive and their sum is also positive. Thus f ′′(x) > 0 for all the x of
interest.

(f) It is not a convex set. It is easy to show that θV (x) + (1 − θ)V (y) is in general not
Vandermonde.

(g) It is not convex. It is the complementary set of the epigraph of the function f(x) =
∥Ax − b∥∞, which is convex and hence also its epigraph epi(f) = {(x, ϵ) | x ∈ Rn, ϵ ∈
R, ∥Ax− b∥∞ ≤ ϵ}
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Question 2 (10 points)

Functional neuroimaging (such as functional ultrasound, fUS) data analysis often aims to
identify neural processes that occur during the execution of a certain task, e.g. processing
of visual stimuli shown to the experimental subject. However, the cerebral blood volume
(CVB) signal measured by fUS is only a proxy for neural activity. The measured time series
y at a given voxel is often assumed to be equal to the underlying neural activity s convolved
with a so-called hemodynamic response function (HRF) that acts as a low-pass filter. Let
us denote the Toeplitz matrix (with columns populated by a delayed version of the HRF
filter coefficients) with H. Further, we will assume that the measurement y is corrupted by
additive Gaussian noise e.

(a) Write down the minimization problem to recover the neural activity s based on the
measurements y, additive noise e and the known matrix H in the maximum likelihood
sense.

Due to the fact that H in general has many highly correlated columns, the problem is ill-
posed. Therefore, a pragmatic solution is to assume that the neural activity is sparse, i.e. the
vector s has at most k nonzero elements, i.e., the stimulus was shown no more than k times
to the subject during the measurements.

(b) Write down the optimization problem considering the sparsity assumption!

(c) Is this problem convex? If yes, prove convexity! If not, propose an appropriate uncon-
strained convex relaxation to the problem!

(d) Now, let us take a gradient descent step at s(0) = 1 as a starting point. Calculate the
gradient at this point!

(e) Next, how would you determine the step size t using exact line search? No need to make
calculations, but clearly explain the 3 steps you need to take to determine t.

(f) Is gradient descent always applicable in this problem?

Solution

(a)

minimize
s

||y −Hs||22

(b)

minimize
s

||y −Hs||22
subject to card(s) ≤ k

(c) It is not convex, as the inequality constraint is not convex. A possible convex relaxation
is achieved by the l1-norm heuristic as a regularization term:

minimize
s

||y −Hs||22 + λ||s||1
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(d)

∇s(||y −Hs||22 + λ||s||1) = 2HTHs− 2HTy + λ1

(e) Let us denote the step size with t. The first step is to write the update in terms of t.

s(1) = s(0) − t∇f(s(0))

Then, we have to evaluate the objective function at s(1) ( we get an expression which
is paramterized with t):

f(s(1)) = ∥y −Hs(1)∥22 + λ∥s(1)||1

Finally, setting the derivative of the objective function with respect to t to 0 and solving
for t gives us the step size:

∂f(s(1))

∂t
= 0

(f) No, because it is not differentiable.
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Question 3 (10 points)

A certain disease is treated with a combination of two drugs, D1 and D2. Unfortunately, these
drugs cause liver damage proportional to x21 + 2x1 + 4x22, where xi represents the number of
doses of Di administered. In order for the treatment to be effective, you need at least 10 mg
of active ingredient A and another 10 mg of active ingredient B. Each dose of D1 has 2 mg
of A and 1 mg of B, whereas each dose of D2 has 1 mg of A and 2 mg of B. Hence, you find
yourself trying to solve the following problem

minimize
x

x21 + 2x1 + 4x22

subject to 2x1 + x2 ≥ 10

x1 + 2x2 ≥ 10

(a) Is this a convex problem? Explain why or why not.

(b) Derive the dual function and write down the dual problem.

(c) Write the KKT conditions for this problem.

(d) Is x1 = 2, 5, x2 = 5, λ1 = 36 and λ2 = 0 an optimal solution to the problem? Prove
your answer. Let us say that λ2 = 0 is optimal. What can you conclude from that?

(e) So far we have implicitly assumed that x ∈ R2. Suppose now we constrain x to be an
integer vector, i.e., x ∈ Z2? How does this affect the optimal objective value p∗ of the
problem?

Solution

(a) Yes it is convex since the objective function is convex (Hessian is diagonal and both
diagonal elements are always positive), and the constraints are affine.

(b) The Lagrangian function is given by

L(x, λ) = x21 + 2x1 + 4x22 + λ1(10− 2x1 − x2) + λ2(10− x1 − 2x2).

To find the minimum over x we set the derivative of the Lagrangian w.r.t x equal to
zero. This gives

2x1 + 2− 2λ1 − λ2 = 0

8x2 − λ1 − 2λ2 = 0

This means the solution for x is

x1 = λ1 + λ2/2− 1

x2 = λ1/8 + λ2/4

The dual function is hence given by

g(λ) = min
x

L(x, λ) =(λ1 + λ2/2− 1)2 + 2(λ1 + λ2/2− 1) + 4(λ1/8 + λ2/4)
2

+ λ1[10− 2(λ1 + λ2/2− 1)− (λ1/8 + λ2/4)]

+ λ2[10− (λ1 + λ2/2− 1)− 2(λ1/8 + λ2/4)].
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The dual problem is then

maximize
x

g(λ)

subject to λ1 ≥ 0

λ2 ≥ 0

(c) The KKT conditions are given by

primal constraints: 2x1 + x2 ≥ 10, x1 + 2x2 ≥ 10

dual constraints: λ1 ≥ 0, λ2 ≥ 0

complementary slackness: λ1(10− 2x1 − x2) = 0, λ2(10− x1 − 2x2) = 0

null gradient of Lagrangian: 2x1 + 2− 2λ1 − λ2 = 0, 8x2 − λ1 − 2λ2 = 0

(d) No, since it does not satisfy the fourth KKT condition. If λ2 = 0 is optimal, then this
means that the second constraint is not active, i.e., x1+2x2 > 10. In other words, even
without this constraint, the optimal solution is the same.

(e) If we include an integer constraint, then the problem becomes more constrained and
hence the optimal function value will increase or remain the same.
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Question 4 (10 points)

Suppose we have to solve a linear regression problem of the form

yk ≈ xTkw, k = 1, 2, . . . ,K,

where for the kth data point, yk is a given scalar and xk is a given N×1 vector. The unknown
regression coefficients are stacked in the N × 1 vector w.

When K ≪ N we have too few equations to solve the problem and we need additional
constraints. One option is to assume a sparse w. Let X be the wide K ×N matrix stacking
the vectors xTk as rows, y be the K × 1 vector stacking the scalars yk as entries, and ϵ > 0 be
a supplied constant. The popular Dantzig selector is then formulated through the following
convex optimization problem:

min
w

∥XT (y −Xw)∥∞

subject to ∥w∥1 ≤ ϵ

The L∞-norm objective imposes that no feature has a high inner product with the residual,
whereas the L1-norm constraint attempts to keep the weight vector w sparse.

Let us try to solve this problem using a first-order algorithm.

(a) First, derive a subgradient of ∥x∥∞. To do this, assume the infinity norm is attained at
index l, i.e., ∥x∥∞ = |xl|. Also derive a subgradient of ∥x∥1.

(b) Denote g1(x) and g2(x) respectively as the subgradient of ∥x∥∞ and ∥x∥1 at x derived in
(a). Based on these two subgradients, derive a first-order algorithm to find the Dantzig
selector.

Alternatively, we can rewrite the Dantzig selector problem as a linear program for which
many algorithms have been developed. This is what we do next in different steps.

(c) Rewrite the L∞ objective as an auxiliary variable c by introducing two additional vector
inequalities.

(d) Rewrite the L1-norm constraint as 1T t ≤ ϵ with auxiliary N ×1 vector t by introducing
two additional vector inequalities.

(e) Based on (a) and (b), reformulate the original optimization problem as a linear program
in w, c and t.

Solution

(a) Based on ∥x∥∞ = |xl|, it is easy to see that a subgradient of ∥x∥∞ is given by [g1(x)]k =
sign(xk)δk,l, where δk,l = 1 if k = l and 0 otherwise. It is a subgradient and not a
gradient, because there could be cases where the infinity norm is attained not only at
index l but also at other indices. A subgradient of ∥x∥1 is given by g2(x) = sign(x).

(b) You can use a subgradient algorithm as

w(k+1) = w(k) − αkg
(k),

where

g(k) =

{
XTXg1(X

T (y −Xw(k))) if ∥w(k)∥1 ≤ ϵ

g2(w
(k)) if ∥w(k)∥1 > ϵ

7



(c) If we use c as cost, then we need the following two vector inequalities:

XT (y −Xw) ≤ c1,

−XT (y −Xw) ≤ c1,

where 1 is an all-one N × 1 vector.

(d) We can rewrite the constraint as 1T t ≤ ϵ if we include the following two vector inequal-
ities

w ≤ t,

−w ≤ t.

(e) The overall linear program can now be written as

min
w,t,c

c

subject to XT (y −Xw) ≤ c1,

−XT (y −Xw) ≤ c1,

1T t ≤ ϵ,

w ≤ t,

−w ≤ t.
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