Stochastic processes Exercise session

Dr. Ir. Richard C. Hendriks

Estimation of a RV

RVs X and Y have the following joint pdf:

$$
f_{X, Y}(x, y)= \begin{cases}6(y-x) & 0 \leq x \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- What is $f_{X \mid Y}(x \mid y)$
- Give the MMSE estimate $\hat{x}_{M}(y)$ of X given $Y=y$.
- What is $f_{Y \mid X}(y \mid x)$
- Give the MMSE estimate $\hat{Y}_{M}(x)$ of Y given $X=x$.

Estimation of a RV

RVs X and Y have the following joint pdf:

$$
f_{X, Y}(x, y)= \begin{cases}6(y-x) & 0 \leq x \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- What is $f_{X \mid Y}(x \mid y)$?
- $f_{Y}(y)=\int_{0}^{y} 6(y-x) d x=\left[6 x y-3 x^{2}\right]_{0}^{y}=3 y^{2}$, for $0 \leq y \leq 1$, otherwise $f_{Y}(y)=0$.

$$
f_{X \mid Y}(x \mid y)= \begin{cases}\frac{6(y-x)}{3 y^{2}}=\frac{2(y-x)}{y^{2}} & 0 \leq x \leq y \\ 0 & \text { otherwise }\end{cases}
$$

Estimation of a RV

- What is $E[X \mid Y]$?

$$
\begin{gathered}
E[X \mid Y]=\int_{0}^{y} x \frac{2(y-x)}{y^{2}} d x=\int_{0}^{y} \frac{2 y x-2 x^{2}}{y^{2}} d x=\left[\frac{y x^{2}-2 / 3 x^{3}}{y^{2}}\right]_{0}^{y} \\
\frac{y^{3}-2 / 3 y^{3}}{y^{2}}=\frac{y}{3}
\end{gathered}
$$

Estimation of a RV

RVs X and Y have the following joint pdf:

$$
f_{X, Y}(x, y)= \begin{cases}6(y-x) & 0 \leq x \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- What is $f_{Y \mid X}(y \mid x)$
- $f_{X}(x)=\int_{x}^{1} 6(y-x) d y=\left[3 y^{2}-6 x y\right]_{x}^{1}=3-6 x+3 x^{2}$. So,

$$
f_{X}(x)= \begin{cases}3-6 x+3 x^{2} & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

$$
f_{Y \mid X}(y \mid x)= \begin{cases}\frac{2(y-x)}{1-2 x+x^{2}} & x \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Estimation of a RV

- What is $E[Y \mid X]$?

$$
f_{Y \mid X}(y \mid x)= \begin{cases}\frac{2(y-x)}{1-2 x+x^{2}} & x \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

- $E[Y \mid X]=\int_{x}^{1} y \frac{2(y-x)}{1-2 x+x^{2}} d y=\left[\frac{\left(\frac{2}{3} y^{3}-x y^{2}\right)}{1-2 x+x^{2}}\right]_{x}^{1}=\frac{\frac{2}{3}-x+\frac{1}{3} x^{3}}{1-2 x+x^{2}}$

$$
=\frac{1}{3} \frac{2-3 x-x^{3}}{1-2 x+x^{2}}=\frac{1}{3} \frac{(x+2)(1-x)^{2}}{(1-x)^{2}}=\frac{x}{3}+\frac{2}{3}
$$

Conditional probability Models

RVs X and Y have pdf

$$
f_{X, Y}(x, y)= \begin{cases}\frac{4 x+2 y}{3} & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Let $A=\{Y \leq 1 / 2\}$

- $P[A]$?
- $f_{X, Y \mid A}(x, y)$
- $f_{X \mid A}(x)$?

Conditional probability Models

- $P[A]=\int_{0}^{1} \int_{0}^{1 / 2} \frac{4 x+2 y}{3} d y d x=5 / 12$

$$
f_{X, Y \mid A}(x, y) \begin{cases}\frac{f_{X, Y \mid A}(x, y)}{P(A)}=\frac{\frac{4 x+2 y}{\frac{3}{12}}}{\frac{5}{12}}=\frac{16 x+8 y}{5} & 0 \leq x \leq 1,0 \leq y \leq 1 / 2 \\ 0 & \text { otherwise }\end{cases}
$$

Conditional probability Models

$$
f_{X, Y \mid A}(x, y) \begin{cases}\frac{f_{X, Y \mid A}(x, y)}{P(A)}=\frac{\frac{4 x+2 y}{3}}{\frac{5}{12}}=\frac{16 x+8 y}{5} & 0 \leq x \leq 1,0 \leq y \leq 1 / 2 \\ 0 & \text { otherwise }\end{cases}
$$

- $f_{X \mid A}=\int_{0}^{1 / 2} \frac{16 x+8 y}{5} d y=\left[\frac{16}{5} x y+\frac{4}{5} y^{2}\right]_{0}^{1 / 2}=\frac{8}{5} x+\frac{1}{5}$

Mid-term Question 2018

Consider the joint PDF

$$
f_{X, Y}(x, y)= \begin{cases}\lambda e^{-\lambda x} & \text { for } 0 \leq y \leq x \\ 0 & \text { otherwise }\end{cases}
$$

a) Calculate the PDFs $f_{X}(x)$ and $f_{Y}(y)$ and use these marginal PDFs to argue whether or not X and Y are dependent.
b) Calculate the MMSE estimator $\hat{Y}=E[Y \mid X]$.
c) Calculate the MMSE estimator $\hat{X}=E[X \mid Y]$.

Mid-term Question 2018

(2 p) a) If $x \geq 0$ then

$$
f_{X}(x)=\int_{0}^{x} \lambda e^{-\lambda x} d y=x \lambda e^{-\lambda x}
$$

otherwise $f_{X}(x)=0$. Similarly, if $y \geq 0$ then

$$
f_{Y}(y)=\int_{y}^{\infty} \lambda e^{-\lambda x} d x=\left[-e^{-\lambda x}\right]_{y}^{\infty}=e^{-\lambda y}
$$

otherwise $f_{Y}(y)=0$.
RVs X and Y are dependent, as $f_{X, Y} \neq f_{X} f_{Y}$.

Mid-term Question 2018

(2 p) b)

$$
\begin{aligned}
f_{Y \mid X}(y \mid x) & = \begin{cases}f_{X, Y} / f_{X}=\frac{1}{x} & \text { for } 0 \leq y \leq x \\
0 & \text { otherwise } .\end{cases} \\
\hat{Y} & =E[Y \mid X]=\int_{0}^{x} y \frac{1}{x} d y=\frac{x}{2} .
\end{aligned}
$$

TUDelft

Mid-term Question 2018

(2 p) c) Calculate the MMSE estimator $\hat{X}=E[X \mid Y]$

$$
\begin{aligned}
& f_{X \mid Y}(x \mid y)= \begin{cases}f_{X, Y} / f_{Y}=\lambda e^{-\lambda(x-y)} & \text { for } y \leq x \\
0 & \text { otherwise } .\end{cases} \\
& \hat{X}=E[X \mid Y]=\int_{y}^{\infty} x \lambda e^{-\lambda(x-y)} d x \\
& \quad=\lambda e^{\lambda y}\left(\left[-\frac{1}{\lambda} x e^{-\lambda x}\right]_{y}^{\infty}+\int_{y}^{\infty} \frac{1}{\lambda} e^{-\lambda x} d x\right) \\
& \quad=y+\frac{1}{\lambda}
\end{aligned}
$$

Mid-term Question 2018

(2 p) c) Or, using the MGF:

$$
\begin{aligned}
\phi_{X \mid Y}(s) & =\frac{\lambda e^{y s}}{\lambda-s} \\
\left.\frac{d \frac{\lambda e^{y s}}{\lambda-s}}{d s}\right|_{s=0} & =y+\frac{1}{\lambda}
\end{aligned}
$$

TUDelft

Bounds on Probabilities

Let $R_{n}=\sum_{m=1}^{n} K_{m}$ with $K_{m} \geq 0$ a RV with $E\left[K_{m}\right]=2$.

1. Give the value for n such that $P\left(R_{n}>60\right) \leq \frac{1}{10}$

Bounds on Probabilities

Let $R_{n}=\sum_{m=1}^{n} K_{m}$ with $K_{m} \geq 0$ a RV with $E\left[K_{m}\right]=2$.

1. Give the value for n such that $P\left(R_{n}>60\right) \leq \frac{1}{10}$

Using Markov inequality: $P\left(R_{n}>60\right) \leq \frac{E\left[R_{n}\right]}{60}=\frac{n 2}{60} \leq \frac{1}{10}$ From this it follows that $n \leq 3$

How can we say more about $P\left(R_{n}>60\right)$? Calculate the PMF.

From PMF to MGF and back...

Given is a RV K_{n} with PMF

$$
P_{K_{n}}= \begin{cases}2^{k} e^{-2} / k! & k=0,1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

1. Calculate the moment generating function $\Phi_{K_{n}}(s)$.
2. Let $R_{n}=\sum_{m=1}^{n} K_{m}$. What is the MGF $\phi_{R_{n}}$?
3. Determine the PMF $P_{R_{n}}$.

From PMF to MGF and back...

1. a) $\Phi_{K_{n}}(s)=\sum_{k=0}^{\infty} \frac{2^{k} e^{-2}}{k!} e^{s k}=e^{-2} \sum_{k=0}^{\infty} \frac{\left(2 e^{s}\right)^{k}}{k!}$

Remember Taylor series for $e^{x}: e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
Thus, $\Phi_{K_{n}}(s)=e^{-2} e^{2 e^{s}}=e^{2\left(e^{s}-1\right)}$
b) Using Table 9.1 p. 295: $P_{K_{i}}(k)$ is a Poisson distribution with $\alpha=2$, with MGF $\Phi_{K_{n}}(s)=e^{\alpha\left(e^{s}-1\right)}=e^{2\left(e^{s}-1\right)}$.
2. $\phi_{R_{n}}=\prod_{m=1}^{n} e^{2\left(e^{s}-1\right)}=e^{2 n\left(e^{s}-1\right)}$
3. We know that $\phi_{R_{i}}=e^{2 n\left(e^{s}-1\right)}$. This is the MGF of again a Poisson distributed RV with $\alpha=2 n$:

$$
P_{R_{n}}(r)= \begin{cases}(2 n)^{r} e^{-2 n} / r! & r=0,1,2, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

TUDelft

Chernoff Bound

Let $R_{n}=\sum_{m=1}^{n} K_{m}$ with $K_{m} \geq 0$ a RV with $E\left[K_{m}\right]=2$.

1. Give the value for n such that $P\left(R_{n}>60\right) \leq \frac{1}{10}$

Chernoff Bound

Let $R_{n}=\sum_{m=1}^{n} K_{m}$ with $K_{m} \geq 0$ a RV with $E\left[K_{m}\right]=2$.

1. Give the value for n such that $P\left(R_{n}>60\right) \leq \frac{1}{10}$

$$
\begin{gathered}
P\left(R_{n}>60\right) \leq \min _{s \geq 0} e^{-s 60} \phi_{R_{n}}(s)=\min _{s \geq 0} e^{-s 60} e^{2 n\left(e^{s}-1\right)} \\
\frac{d\left(-s 60+2 n\left(e^{s}-1\right)\right)}{d s}=-60+2 n e^{s}=0 \Rightarrow s=\log \left(\frac{60}{2 n}\right)
\end{gathered}
$$

Note: s should be $s \geq 0 \Rightarrow$ max. value n for which bound is valid is $n=30$.

$$
\begin{gathered}
P\left(R_{n}>60\right) \leq\left. e^{-s 60} e^{2 n\left(e^{s}-1\right)}\right|_{s=\log \left(\frac{60}{2 n}\right)}=e^{-60 \log \left(\frac{60}{2 n}\right)} e^{2 n\left(\left(\frac{60}{2 n}\right)-1\right)}= \\
e^{-60 \log \left(\frac{60}{2 n}\right)+60-2 n}
\end{gathered}
$$

For $n=3$ we get according to Chernoff $P\left(R_{n} \geq 60\right) \leq 2.8 \cdot 10^{-37}$
Using the derived PMF: $P\left(R_{n} \geq 60\right)=1.5 \cdot 10^{-38}$

