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Summarizing

RY (τ) = h(−τ) ∗ h(τ) ∗ RX (τ)

RY [k] = h−k ∗ hk ∗ RX [k]
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Example: FIR filter

E[Xn] = 1 , RX [k] =


4 k = 0

2 k = ±1

0 |k | ≥ 2

Determine E[Yn], RXY [k], RY [k].

E[Yn] = E[Xn]
∑

n hn = 1

Method 1 (only works for short FIR filters): Yn = 1
2Xn + 1

2Xn−1

RXY [k] = E[XnYn+k ] = E

[
Xn

(
1

2
Xn+k +

1

2
Xn+k−1

)]
=

1

2
RX [k] +

1

2
RX [k − 1]

Method 2:

RXY [k] =
∞∑

j=−∞
hjRX [k − j ] =

1

2
RX [k] +

1

2
RX [k − 1]

7. power spectral density 3 / 32



Example: FIR filter

E[Xn] = 1 , RX [k] =


4 k = 0

2 k = ±1

0 |k | ≥ 2

Determine E[Yn], RXY [k], RY [k].

E[Yn] = E[Xn]
∑

n hn = 1

Method 1 (only works for short FIR filters): Yn = 1
2Xn + 1

2Xn−1

RXY [k] = E[XnYn+k ] = E

[
Xn

(
1

2
Xn+k +

1

2
Xn+k−1

)]
=

1

2
RX [k] +

1

2
RX [k − 1]

Method 2:

RXY [k] =
∞∑

j=−∞
hjRX [k − j ] =

1

2
RX [k] +

1

2
RX [k − 1]

7. power spectral density 3 / 32



Example: FIR filter

Method 1:

RY [k] = E[YnYn+k ] = E

[(
1

2
Xn +

1

2
Xn−1

)(
1

2
Xn+k +

1

2
Xn+k−1

)]
=

1

2
RX [k] +

1

4
RX [k − 1] +

1

4
RX [k + 1]

Method 2: using RXY [k] = 1
2RX [k] + 1

2RX [k − 1]:

RY [k] =
∞∑

i=−∞
h−iRXY [k − i ] = h0RXY [k] + h1RXY [k + 1]

=
1

2

(
1

2
RX [k] +

1

2
RX [k − 1]

)
+

1

2

(
1

2
RX [k + 1] +

1

2
RX [k]

)
=

1

2
RX [k] +

1

4
RX [k − 1] +

1

4
RX [k + 1]
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Example: FIR filter
Finally, using

E[Xn] = 1 , RX [k] =


4 k = 0

2 k = ±1

0 |k | ≥ 2

we obtain

RY [k] =
1

2
RX [k] +

1

4
RX [k − 1] +

1

4
RX [k + 1]

=


3 k = 0

2 k = ±1

0.5 k = ±2

0 otherwise.
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FIR and IIR filters

Notice that this was a simple example of an FIR filter. More in general:

Finite Impulse Response (FIR) filter:

Yn =
M∑
i=0

hiXn−i

Infinite Impulse Response (IIR) filter:

Yn =
∞∑
i=0

hiXn−i =
N∑
j=1

ajYn−j +
M∑
i=0

biXn−i
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FIR and IIR filters

Terminology

If we input white noise into these LTI systems, then

the output of an FIR filter is called a moving average (MA) process,

the output of an IIR filter is called an autoregressive (AR) process,

a combination of the two is called an ARMA process.

Applications of AR models:

Biomedical signals: EEG signals, heart rhythm variability

Many speech processing systems (including speech compression in
GSM)
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Example of AR(1) realizations
Last week, we saw a first order AR process: Yn = aYn−1 + Xn, with Xn:
white Gaussian noise with variance σ2

RY [k] =
σ2

1− a2
a|k|
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Modeling biomedical signals using AR models
EEG signal examples
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Modeling biomedical signals using AR models
EEG signal at the onset of an epileptic seizure
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Speech modeling

Analysis: find coefficients {ak} of an FIR filter such that
Yn − a1Yn−1 − · · · − apYn−p = Xn is “white”

Transmit filter coefficients {ak}, σ2

Synthesis: generate white noise Xn and use {ak} as AR filter to
reconstruct Yn = a1Yn−1 + · · ·+ apYn−p + Xn.
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Suppl. 5, 6: Power spectral density

RX [k] is a deterministic sequence that captures properties of the RV Xn.

What about the DTFT of Xn?
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Notation

Notation issues, compared to EE2S11 Signals & Systems:

Using f for continuous-time frequency (not F )

Using f [Hz] instead of Ω [rad/s]; table 1, 2 is a bit different
(Ω⇒ 2πf )

Using X (f ) and X (t), or x(t): confusion between FT and RV

Regarding Section 6:

Using φ for discrete-time normalized frequency (not f )

Using φ (normalized frequency) instead of ω; table 3 is a bit different
(ω ⇒ 2πφ)

Mixing use of xn and Xn, and hn or h[n]
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The Fourier transform
Fourier transforms are commonly used in signal processing to describe

Frequency content of deterministic signals

Frequency characteristics of filters

The FT of a random signal is another random signal!
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Fourier Transform for random signals?
For random signals, the Fourier transform of a single realization is less
informative as the result depends on the particular realization.

Solution: average! I.e. consider E[|X (f )|2]

(Question: why not E[X (f )]?)
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Power Spectral Density (PSD)
Given X (t), consider a rectangular windowed version

XT (t) =

{
X (t) −T ≤ t ≤ T

0 otherwise

The power spectral density of a WSS process X (t) can be defined as:

SX (f ) = lim
T→∞

1

2T
E
[
|XT (f )|2

]
= lim

T→∞

1

2T
E

[∣∣∣∣∫ T

−T
X (t)e−j2πftdt

∣∣∣∣2
]

Take Fourier transform of RV XT (t)

Take absolute value (amplitude spectrum), squared

Average (expected value), normalize by 2T

The windowing by T is needed because WSS processes run forever
(infinite energy) ⇒ convert to power by 1/(2T )
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Wiener-Khintchine theorem

E
[
|XT (f )|2

]
= E

[(∫ T

−T
X (t)e−j2πftdt

)(∫ T

−T
X (t ′)e j2πft

′
dt ′
)]

=

∫ T

−T

∫ T

−T
E
[
X (t)X (t ′)

]︸ ︷︷ ︸
RX (t−t′)

e−j2πf (t−t
′)dtdt ′

SX (f ) = lim
T→∞

1

2T
E
[
|XT (f )|2

]
= · · · =

∫ ∞
−∞

RX (τ)e−j2πf τdτ

Compute the average power at a frequency, for (in principle) infinitely
long signals.
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Wiener-Khintchine
For time-continuous WSS random processes X (t), the power spectral
density (PSD) is the Fourier transform of RX (τ):

SX (f ) =

∫ ∞
−∞

RX (τ)e−j2πf τdτ

RX (τ) =

∫ ∞
−∞

SX (f )e j2πf τdf

SX (f ) ≥ 0 for all f∫ ∞
−∞

SX (f )df = RX (0) = E[X 2(t)]

SX (−f ) = SX (f )

Note: no 1
2π in the IFT as we work with f , not Ω.
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Interpretations

The PSD of a random process/signal gives the average power of the
signal as function of frequency. Since f is continuous, it is a density.

The PSD can be calculated from the autocorrelation function of the
WSS random process.

If Y (t) is the output of a filter h(t) with input X (t), we saw

RY (τ) = h(τ) ∗ h(−τ) ∗ RX (τ)

⇒ SY (f ) = H(f ) · H∗(f ) · SX (f ) = |H(f )|2 SX (f )

This shows how the filter modifies frequency components of X (t)
individually. (⇒ Supplement Sections 7, 8; next lecture)
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Fourier transform pairs
Table 1 (p.29)

sinc(x) =
sin(πx)

πx

rect(x) =

{
1 |x | < 1

2

0 o.w.
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Fourier transform properties
Table 2 (p.30)
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Example 1

Let X (t) be white noise: WSS, zero mean, with RX (τ) = N0δ(τ).

Determine SX (f ).

SX (f ) =

∫ ∞
−∞

RX (τ)e−j2πf τdτ = N0

∫ ∞
−∞

δ(τ)e−j2πf τdτ = N0

The PSD is flat, all frequencies are equally strong, hence “white” (cf.
white light)
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Example 2
Given is a WSS process X (t) with

RX (τ) = Ae−b|τ |, b > 0.

Derive the PSD SX (f ) and calculate the average power E[X 2(t)].

Using Table 1 (Fourier transform pairs), we learn that

ae−a|τ | ⇔ 2a2

a2 + (2πf )2

SX (f ) =
A

b

2b2

b2 + (2πf )2
=

2Ab

b2 + (2πf )2

The average power is:

E[X 2(t)] = RX (0) = A

=

∫ ∞
−∞

SX (f )df =

[
A

π
arctan(2πf /b)

]∞
−∞

7. power spectral density 23 / 32



Example 2
Given is a WSS process X (t) with

RX (τ) = Ae−b|τ |, b > 0.

Derive the PSD SX (f ) and calculate the average power E[X 2(t)].

Using Table 1 (Fourier transform pairs), we learn that

ae−a|τ | ⇔ 2a2

a2 + (2πf )2

SX (f ) =
A

b

2b2

b2 + (2πf )2
=

2Ab

b2 + (2πf )2

The average power is:

E[X 2(t)] = RX (0) = A

=

∫ ∞
−∞

SX (f )df =

[
A

π
arctan(2πf /b)

]∞
−∞

7. power spectral density 23 / 32



Problem 5.1
X (t) is a wide sense stationary process with autocorrelation function

RX (τ) = 10
sin(2000πτ) + sin(1000πτ)

2000πτ

What is the power spectral density of X (t)?

sinc(x) =
sin(πx)

πx

In terms of the sinc(·) function, we obtain

RX (τ) = 10 sinc(2000τ) + 5 sinc(1000τ) .

From Table 1,

SX (f ) =
10

2000
rect

(
f

2000

)
+

5

1000
rect

(
f

1000

)
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Problem 5.2

X (t) is a wide sense stationary process with µX = 0, and Y (t) = X (αt)
where α is a nonzero constant. Find RY (τ) in terms of RX (τ). Is Y (t)
wide sense stationary? If so, find the power spectral density SY (f ).

The process Y (t) has expected value E[Y (t)] = 0. The autocorrelation
function of Y (t) is

RY (t, τ) = E[Y (t)Y (t + τ)]

= E[X (αt)X (α(t + τ))] = RX (ατ) .

Thus, Y (t) is WSS. The power spectral density is

SY (f ) =

∫ ∞
−∞

RX (ατ)e−j2πf τdτ .
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Problem 5.2 (cont’d)

For α > 0, the substitution τ ′ = ατ gives

SY (f ) =
1

α

∫ ∞
−∞

RX (τ ′)e−j2π(f /α)τ
′
dτ ′ =

1

α
SX (f /α)

For α < 0, the substitution τ ′ = −ατ gives

SY (f ) =
1

−α

∫ ∞
−∞

RX (−τ ′)e−j2π(−f /α)τ ′dτ ′

=
1

−α
SX (−f /α) using RX (−τ ′) = RX (τ ′)

Altogether,

SY (f ) =
1

|α|
SX

(
f

α

)
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PSD for Discrete-time stochastic processes
For a discrete-time stochastic WSS process Xn:

SX (φ) =
∞∑

k−∞
RX [k]e−j2πφk

RX [k] =

∫ 1/2

−1/2
SX (φ)e j2πφkdφ

SX (φ) ≥ 0 for all φ∫ 1/2

−1/2
SX (φ)dφ = RX [0] = E[X 2

n ]

SX (−φ) = SX (φ)

For any integer n: SX (φ+ n) = SX (φ) (spectrum is periodic.)
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Discrete-time Fourier transform pairs
Table 3 (p.37)
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Problem 6.1

Xn is a wide sense stationary discrete-time random sequence with
autocorrelation sequence RX [k] such that

RX [k] = δ[k] + (0.1)|k|, k = 0,±1,±2, · · ·

Find the power spectral density SX (φ).

We can find the PSD directly from Table 3
with (0.1)|k|, corresponding to a|k|. The table
yields

SX (φ) = 1 +
1− (0.1)2

1 + (0.1)2 − 2(0.1) cos 2πφ

=
2− 0.2 cos 2πφ

1.01− 0.2 cos 2πφ
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Example

Given a zero-mean WSS process Xn with RX [k]

RX [k] =

{
σ2(2− |k |)/4 k = −1, 0, 1

0 otherwise.

What is the PSD of Xn?

SX (φ) =
1∑

n=−1
RX [k]e−j2πnφ = σ2

[
2− 1

4
e j2πφ +

2

4
+

2− 1

4
e−j2πφ

]

=
σ2

2
+
σ2

2
cos(2πφ)
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Problem

Given the power spectral density of a WSS sequence Xn:

SX (φ) = 5 + 4 cos(2πφ)

Find the corresponding autocorrelation sequence RX [k]. Calculate the
average power of Xn.

SX (φ) = 5 + 4 cos(2πφ) = 5 + 2e j2πφ + 2e−j2πφ

Table 3 shows: RX [k] = 5δ[k] + 2δ[k − 1] + 2δ[k + 1].

The average power of Xn is E[X 2
n ] = RX [0] = 5.
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To do:

Study Sections 5 and 6

Check old exams for related exercises

Next lecture, we’ll finish the course with Supplement Sections 7 and 8.
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