EE2S31 Signal Processing — Stochastic Processes
Lecture 7: Power Spectral Density — Suppl. 5, 6
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Summarizing

X(t) linear system (LTI) Y(t)
| h(t) or hy, —
X, Yo
Rx(7) h(t) Rxy () h(—t) Ry (7)
R[] hi, Ry [H] h—t Ry[k]

Ry (1) = h(—7) * h(7) * Rx(7)

Ry[k] = h,k * hk * Rx[k]
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Example: FIR filter

4 k = 0 WSS X([n] Y[n)
E[Xo) =1, Rxlkl={2 k=<1
0

k| > 2

Determine E[Y,], Rxy[k], Ry|K].
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Example: FIR filter

4 k=0 WssXln Y[
E[X,]=1, Rxlkl=<2 k==+1
0

k| > 2

Determine E[Y,], Rxy[k], Ry|K].

m E[Y,] =E[X,]>,hh=1
= Method 1 (only works for short FIR filters): Y, = 2X, + 1X, 4

1 1
Rxylk] = E[XaYpik] =E [Xn <2Xn+k + 2Xn+k1>]

1 1
= SRxlkl+ 5 Rx[k —1]
= Method 2:

Revlk= 3 Rxlk — 1 = 3Rx[K + SRxlk — 1

j=—o0
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Example: FIR filter

m Method 1:

1 1 1 1
RY[k] - E[YnYn-i-k] =E |:<2Xn + 2)(n—l) <2Xn+k + 2Xn+k—1>:|

1 1 1
= —Rx|lk]+ -Rxlk — 1]+ —Rx|k +1
SRx[K] + 7Rl — 1]+ £ Rxlk + 1]

= Method 2: using Rxy[k] = 5Rx[k] + 5 Rx[k — 1]:

Ry[k] = i h_,'ny[k — I] = hony[k] + thxy[k + ]_]

1=—00

(o) (s o)

1 1 1
= 5Rx[k] + ZRX[k - 1]+ ZRX[k +1]
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Example: FIR filter
Finally, using

WSS X([n] Y[n)
4 k=0

E[X,] =1, Rx[k|={2 k=<1
0 |k|>2

we obtain

1 1 1
Ryl[k] = ERx[k] + ZRX[k —1]+ ZRX[k +1]
3 k=0
k=41
05 k=42
0 otherwise.
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FIR and IIR filters

Notice that this was a simple example of an FIR filter. More in general:

m Finite Impulse Response (FIR) filter:
M

Yn - Z hanfi
i=0

m Infinite Impulse Response (IIR) filter:

e’ N M
Yo=Y hiXosi=Y ajYoj+ Y biXn
i=0 j=1 i=0
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FIR and IIR filters

Terminology

If we input white noise into these LTI systems, then

m the output of an FIR filter is called a moving average (MA) process,
m the output of an IIR filter is called an autoregressive (AR) process,

m a combination of the two is called an ARMA process.

Applications of AR models:

m Biomedical signals: EEG signals, heart rhythm variability

= Many speech processing systems (including speech compression in

GSM)
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Example of AR(1) realizations

Last week, we saw a first order AR process: Y/,
2

aY, 1+ X,, with X,:

white Gaussian noise with variance o

180 200

a=0 0
-2
[} 20 ) 60 80 100 120 140 160 180 200
5 ]
a = 09 0
s ]
) ) 40 ) ) 0 i 0 10 10 20
2
g k
Ry[k] = sal¥!

1—a
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Modeling biomedical signals using AR models

EEG signal examples
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Figure 2.3: Electroencephalographic rhythms observed during various states fro
wakefulness to sleep: (a) excited, (b) relaxed, (¢) drowsy, (d) asleep, and (e) deep
asleep. This example is classical and was originally presented by the famous EE
pioneer H.H. Jasper [12].
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Modeling biomedical signals using AR models

EEG signal at the onset of an epileptic seizure

FRNAIIRA

Time (s)

Figure 2.9: A multichannel EEG showing the onset of a primary generalized
seizure about halfway into the recording. (Reprinted from Wong [16] with permis-
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Speech modeling

b T S

Parametric
description
of speech

reconstructed

Ry[k] Rx[K] = 0%6[k] 3 Ry[k)

m Analysis: find coefficients {a,} of an FIR filter such that
Yo—a1tYo1— - —apYop=X,is “white"

= Transmit filter coefficients {ax}, o2

m Synthesis: generate white noise X, and use {ax} as AR filter to
reconstruct Y, = a1 Y, 1+ -+ a3, Y p + X,
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Suppl. 5, 6: Power spectral density

X(t) linear system (LTI) Y(t)
| h(t) or hy, —
Xn Y,
Rx(r) h(t) Rxy () h(—t) Ry (7)
Rx[K] hk Rxylk] Pt Ry [K]

Rx|[k] is a deterministic sequence that captures properties of the RV X,.
What about the DTFT of X,,?
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Notation
Notation issues, compared to EE2511 Signals & Systems:

m Using f for continuous-time frequency (not F)

m Using 7 [Hz] instead of ) [rad/s|; table 1, 2 is a bit different
(Q = 27f)

m Using X(f) and X(t), or x(t): confusion between FT and RV

Regarding Section 6:

m Using ¢ for discrete-time normalized frequency (not f)

m Using ¢ (normalized frequency) instead of w; table 3 is a bit different
(w=27¢)

m Mixing use of x, and X,, and h, or h[n|

1,"U Delft 7. power spectral density



The Fourier transform
Fourier transforms are commonly used in signal processing to describe
m Frequency content of deterministic signals

m Frequency characteristics of filters

X(®) X(5)|

m The FT of a random signal is another random signal!
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Fourier Transform for random signals?

For random signals, the Fourier transform of a single realization is less
informative as the result depends on the particular realization.

X () - X (£)] hﬂ/\w

X X(h)

WL o

AP A
80 100 f

S T S )
8

b

o 50 100 150 200 t o 20 40 50 80 100 f

= Solution: average! |.e. consider E[|X(f)|?]
(Question: why not E[X(f)]?)
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Power Spectral Density (PSD)

Given X(t), consider a rectangular windowed version

Xr(t) = X(t) -T<t<T
e 0 otherwise

The power spectral density of a WSS process X(t) can be defined as:

T ' 2
‘/ X(t)e 72 ftdt ]

Sx(f) = lim iTE[yXT(f)F] = lim %E

T—o0 T—o00

-T

m Take Fourier transform of RV X (t)
m Take absolute value (amplitude spectrum), squared

m Average (expected value), normalize by 2T

The windowing by T is needed because WSS processes run forever
(infinite energy) = convert to power by 1/(27)

'i"u Delft 7. power spectral density



Wiener-Khintchine theorem

E[|XT(f)\2] - [(/ X(t _12”ftdt> (/ X(t)eﬂﬂf’dt)]
= / / X(£)X(t")] e 2 (=) dedt’
TR
Su(F) = Jim S [Xr(FF] == [ Relr)e 27 ar

Compute the average power at a frequency, for (in principle) infinitely
long signals.

4 .
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Wiener-Khintchine

For time-continuous WSS random processes X(t), the power spectral
density (PSD) is the Fourier transform of Rx(7):

Sx(f) = / Ry (r)e 27T dr

o)

Rx(r) = / Sx(f)e*df

m Sx(f) >0 forall f
n /_OO Sx(f)df = Rx(0) = E[X?(1)]

| | Sx(*f) = Sx(f)

= Note: no i in the IFT as we work with f, not (2.
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Interpretations

m The PSD of a random process/signal gives the average power of the
signal as function of frequency. Since f is continuous, it is a density.

m The PSD can be calculated from the autocorrelation function of the
WSS random process.

If Y(t) is the output of a filter h(t) with input X(t), we saw

Ry (1) = h(T) * h(—7) * Rx(7)

= Sy(f) = H(f) - H*(f) - Sx(f) = [H(f)[? Sx(f)

This shows how the filter modifies frequency components of X(t)
individually. (= Supplement Sections 7, 8; next lecture)
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Fourier transform pairs
Table 1 (p.29)

Time function Fourier Transform )
) sin(mx
8(7) . sinc(x) = sin(mx)
1 5(F) X
. e 1 |x <}
. L rect(x) = 2
u(7) 300+ jorf (x) 0 o.w.
eI2mfor 5(f = fo)
€08 27 foT %&f — fo) + %5(f + fo)
1 1
sin 27 for Q—jﬁ(f - fo) = 2—j5(f + fo)
—ary(7) _*
ae™y ot j2n]
—alr| 20°
- a2 + (27 f)?
e e /a?
rect(1/T) T'sinc(fT)
1
sinc(2Wr) W rect(%)
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Fourier transform properties

Table 2 (p.30)

Time function

Fourier Transform

9(1 —70) G(f)e72mim

g7y e

g(—7) c(f)

wir) jonre()

/_w (v) dv %Jr@w)
: G(f)H(f)

/

. (w)g(T —v)dv
Hh(t)

9
h
)h(

S HUG(f = ) df!
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Example 1

Let X(t) be white noise: WSS, zero mean, with Rx(7) = Nod(7).

Determine Sx/(f).
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Example 1

Let X(t) be white noise: WSS, zero mean, with Rx(7) = Nod(7).

Determine Sx/(f).

Sx(f) = / Rx(7)e > Tdr = No / 5(m)e 2™ Tdr = Ny

—00

The PSD is flat, all frequencies are equally strong, hence “white” (cf.
white light)
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Example 2
Given is a WSS process X(t) with

Rx(t) = Ae b1l b>o.
Derive the PSD Sx(f) and calculate the average power E[X?(t)].
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Example 2
Given is a WSS process X(t) with

Rx(t) = Ae b1l b>o.
Derive the PSD Sx(f) and calculate the average power E[X?(t)].

Using Table 1 (Fourier transform pairs), we learn that

ae~l"l 72‘?2
a2 + (2nf)?
A 2b? 2Ab
f = — =
x(f) bb2+ (272~ b2+ (2nf)2
The average power is:
E[X3(t)] = Rx(0) = A
o0 A o
= / Sx(f)df = [ arctan(27rf/b)]
—00 m —00
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Problem 5.1

X(t) is a wide sense stationary process with autocorrelation function

sin(200077) 4 sin(100077)

Ry(r) = 1
x(7) =10 200077

What is the power spectral density of X(t)?
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Problem 5.1

X(t) is a wide sense stationary process with autocorrelation function

sin(200077) 4 sin(100077)

R =1
x(7) =10 200077
What is the power spectral density of X(t)?
sinc(x) = sin(mx)
X

In terms of the sinc(+) function, we obtain

Rx(7) = 10sinc(20007) + 5sinc(10007) . _om H—\_\
From Table 1, e ;

Sx(f) = 10 rect ! + > rect f
X 2000 2000 1000 1000
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Problem 5.2

X(t) is a wide sense stationary process with ;1x = 0, and Y(t) = X(at)
where « is a nonzero constant. Find Ry(7) in terms of Rx(7). Is Y(t)
wide sense stationary? If so, find the power spectral density Sy ().
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Problem 5.2

X(t) is a wide sense stationary process with ;1x = 0, and Y(t) = X(at)
where « is a nonzero constant. Find Ry (7) in terms of Rx(7). Is Y(t)
wide sense stationary? If so, find the power spectral density Sy ().

The process Y(t) has expected value E[Y(t)] = 0. The autocorrelation
function of Y(t) is

Ry(t,7) = E[Y(£)Y(t+1)]
= E[X(at)X(a(t +7))] = Rx(aT).

Thus, Y(t) is WSS. The power spectral density is

Sy(f) = / Rx(ar)e 27 Tdr .

— 00
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Problem 5.2 (cont'd)

m For o > 0, the substitution 7/ = a7 gives

1 [ . , 1
Sy(f) = a/ RX(T/)e_JZW(f/OL)T dr’ — ESX(f/Oé)
m For o < 0, the substitution 7" = —a7 gives
1 [ . ,
Sy(f) = — RX(_T/)e—ﬁw(—f/a)T dr'
—a ) o

= Sx(~f/o)  using Rx(~7") = Rx(+')

Altogether,

Sy(f) = isx <f>

o] \a
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PSD for Discrete-time stochastic processes

For a discrete-time stochastic WSS process X,,:

Sx(@) = Y Rx[kle />

k—o0

1/2 _
&m::/m&wwmw

m Sx(¢) >0 for all ¢

1/2
{/2&@w=&M:ﬂﬁ]

= Sx(=¢) = Sx(¢)
m For any integer n: Sx(¢ + n) = Sx(¢) (spectrum is periodic.)
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Discrete-time Fourier transform pairs
Table 3 (p.37)

Discrete Time function Discrete Time Fourier Transform
o[n] =6, 1
1 ()
8= o) = 8umsg e-mono
1 1 &
uln] Tty kz 8o+ k)
ei2mdon E 3(6— o — k)
j—
1. 1o
cos 2T don 56(@ — ¢o) + 55(@ + o)
i 1 1
sin 2w gn 270(46 — ¢o) — 27_5(@ + ¢o)
1
a"uln] Tae s,
nl 1—a?
al —_———
1+ a?—2acos2mo
Gn—no G(a‘))e—ﬂmwn
g, &7 G(¢ — o)
9n G*(9)
o
Z Gk G(o)H(¢)
k=—o0
72
Gnltn H(¢G(d— ¢')do'
—1/2
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Problem 6.1

X, is a wide sense stationary discrete-time random sequence with
autocorrelation sequence Rx k]| such that

Rx[k] = 6[k] + (0.1)X,  k=0,41,42,---

Find the power spectral density Sx(¢).
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Problem 6.1

X, is a wide sense stationary discrete-time random sequence with
autocorrelation sequence Rx k]| such that

Rx[k] = 6[k] + (0.1)X,  k=0,41,42,---

Find the power spectral density Sx(¢).

We can find the PSD directly from Table 3 2
with (0.1)/K], corresponding to a/X|. The table _+s

@« o1

yields .
1-(0.1)? % o1 o2 o3 o4 os
=1
Sx(9) 1017 —2(0.1)cos 276 f
2 —0.2cos2m¢

1.01 — 0.2 cos27¢
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Example

Given a zero-mean WSS process X, with Rx|[k]

o2(2—|k))/4  k=-1,0,1
reli] = |72 @ = KD/ !
0 otherwise.

What is the PSD of X7

4 .
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Example

Given a zero-mean WSS process X, with Rx|[k]

o2(2—|k))/4  k=-1,0,1
reli] = |72 @ = KD/ !
0 otherwise.

What is the PSD of X7

! . 21 . 2 2-1
Sx(¢) = Z Rx[k]e /2™ = 52 [4e’27r¢ + 2 + Te*ﬂw
n=-—1
2 2
= % + % cos(2m¢p)

3
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Problem

Given the power spectral density of a WSS sequence X,;:
Sx(¢) =5 + 4cos(27m¢)

Find the corresponding autocorrelation sequence Rx|[k|. Calculate the
average power of X,.
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Problem

Given the power spectral density of a WSS sequence X,;:
Sx(¢) =5 + 4cos(27m¢)

Find the corresponding autocorrelation sequence Rx|[k|. Calculate the
average power of X,.

Sx(¢) =5+ 4cos(2mp) =5+ 2e/2md | 92T

Table 3 shows: Rx[k] = 50[k]| + 2d[k — 1] + 20[k + 1].
The average power of X, is E[X?] = Rx[0] = 5.
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To do:

m Study Sections 5 and 6

m Check old exams for related exercises

Next lecture, we'll finish the course with Supplement Sections 7 and 8.
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