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Today: Ch. 13 Stochastic Processes

Stochastic: random

Process: sequence of variables where the ordering is of importance.

Random variable: Mapping from an outcome s in the sample space
to a real number x(s).

Stochastic process: Mapping from an outcome s in the sample
space to a function x(t, s), which depends on an ordering variable like
time or space: a random signal.
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Stochastic Processes

The stochastic process is denoted by X (t).

Sample function x(t, s1) is one particular realization (outcome s1) of
this process.

The ensemble of a stochastic process is the set of all possible time
functions that can result from an experiment.
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Problem 13.1.3
Consider the transmission of 3 bits in a BPSK system (binary phase
shift keying):

S ∈ {000, 001, 010, 011, 100, 101, 110, 111}

The ensemble consists of 8 possible sample functions:
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Example: speech

Experiment ‘s’: pronounce ‘ssss’

Sample function: one realization of the waveform x(t, s)
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Example: arrival times of data packets
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Example: binary bit pattern

A stochastic description can be used for image compression.
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Example: handwritten digits

A stochastic description (features!) is used for pattern recognition.
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Example: linear filtering of a stochastic process

How can we describe Y (t) when X (t) is a stochastic process?

Statistical descriptions of X (t):

mean µX

Autocorrelation function RX (τ).

Statistical descriptions of Y (t):

mean µY = µX
∫
t h(t)dt

RY (τ) = h(τ) ∗ h(−τ) ∗ RX (τ).

This will be the topic of the Supplement (next weeks)
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Description of a random process

How to describe a stochastic process at one time instance: e.g.,
X (t1)?

How to describe a stochastic process at multiple time instances: e.g.,
[X (t1),X (t2)]T ?
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Description of a random process

Similar as for RVs, we can use the PDF/PMF to describe stochastic
processes:

At any (fixed) time tk the stochastic process can be regarded as a
random variable:

X (tk) ∼ fXtk
(xtk )

This PDF may be different for each tk !

The joint behavior for multiple time instances t, i.e., t1, · · · , tk is
given by the joint PDF:

[X (t1), · · · ,X (tk), · · · ]T ∼ fXt1 ,Xt2 ,··· ,Xtk
,···(xt1 , xt2 , · · · , xtk , · · ·)
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Example: rectified sinusoid with random amplitude

Let X (t) = R| cos(ωt)| with

fR(r) =

{
1

10e
−r/10 r ≥ 0

0 otherwise

Calculate fX (t)(x)!

Approach

First calculate the CDF FX (t)(x)

Then calculate the PDF fX (t)(x) = d
dx FX (t)(x)
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Example: rectified sinusoid with random amplitude

FX (t)(x) = P[X (t) ≤ x ]

= P[R |cos(ωt)| ≤ x ]

= P [R ≤ x/| cos(ωt)|] if cos(ωt) 6= 0

=

∫ x/| cos(ωt)|

0
fR(r) dr

= 1− e
− x

10| cos(ωt)| if x ≥ 0

If cos(ωt) 6= 0:

FX (t)(x) =

{
0 x < 0

1− e
− x

10| cos(ωt)| x ≥ 0.
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Example: rectified sinusoid with random amplitude

If cos(ωt) 6= 0:

fX (t)(x) =
dFX (t)(x)

dx
=

{
0 x < 0

1
10| cos(ωt)|e

− x
10| cos(ωt)| x ≥ 0.

If cos(ωt) = 0, then X (t) = 0 (constant) and fX (t)(x) = δ(x).
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Problem 13.2.1 (similar: 13.2.4)

Let W be an exponential random variable with PDF

fW (w) =

{
e−w w ≥ 0

0 otherwise

Find the CDF FX (t)(x) of the time-delayed ramp process X (t) = t −W .

P[X (t) ≤ x ] = P[t −W ≤ x ] = P[W ≥ t − x ] .

Since W ≥ 0, if x ≥ t then P[W ≥ t − x ] = 1. When x < t,

P[W ≥ t − x ] =

∫ ∞
t−x

fW (w)dw = e−(t−x) .
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Problem 13.2.1 (cont’d)
Combining the facts, we have

FX (t)(x) = P[W ≥ t − x ] =

{
e−(t−x) x < t

1 x ≥ t

We note that the CDF contains no discontinuities. Taking the
derivative of the CDF with respect to x , we obtain the PDF

fX (t)(x) =

{
e−(t−x) x < t

0 x ≥ t

• Treat t as a constant

• Calculate CDF FX (t)(x)

• Then calculate PDF fX (t)(x)
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Description of a random process

Notice that

[X (t1), · · · ,X (tk), · · · ]T ∼ fXt1 ,Xt2 ,··· ,Xtk
,···(xt1 , xt2 , · · · , xtk , · · ·)

resembles a vector random variable,

but can be of infinite dimensionality,

and ordering (in time) of the X (tk) is essential.

Generally, the joint PDF is very difficult to acquire. Exceptions:

Independent identically distributed (iid) random sequence/process

Gaussian stochastic process

Poisson process (skipped), Brownian motion process (skipped)
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Independent identically distributed (iid) random sequences
For an iid random sequence

all X (tk) are mutually independent random variables for all tk ,

all X (tk) have the same PDF for all tk .

Let Xn denote a (time discrete) iid random sequence with sample vector
X = [Xn1 , · · · ,Xnk ]T .

For a discrete valued Xn, the joint PMF is

PX (x) = PX1(x1) · · ·PXk
(xk) =

k∏
i=1

PX (xi )

For a continuous valued Xn, the joint PDF is

fX (x) = fX1(x1) · · · fXk
(xk) =

k∏
i=1

fX (xi )
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Example: Bernoulli process (time discrete)
One realization of a Bernoulli process (e.g., a bit sequence)

PMF for one time instance k:

PXk
(xk) =


p xk = 1

1− p xk = 0

0 otherwise

⇔ PXk
(xk) =

{
pxk (1− p)1−xk xk = 0, 1

0 otherwise
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Example: Bernoulli process (cont’d)

PXk
(xk) =

{
pxk (1− p)1−xk xk = 0, 1

0 otherwise

For two time instances t1 and t2 we obtain (iid process!)

PX1,X2(x1, x2) = PX1(x1)PX2(x2) = px1(1− p)1−x1px2(1− p)1−x2

= px1+x2(1− p)2−x1−x2

For k time instances we obtain

PX (x) =
k∏

i=1

pxi (1− p)1−xi = px1+···+xk (1− p)k−(x1+···+xk )
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Gaussian Process

Gaussian processes occur quite often in nature (remember the central
limit theorem!)

The process X (t) is a Gaussian stochastic process (sequence) if and
only if X = [X (t1) · · · X (tk)]T is a Gaussian random vector for any
integer k > 0 and any set of time instances t1, t2, · · · , tk .
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Gaussian Process

Remember that for Gaussian random vectors X = [X1,X2, · · · ,XN ]T we
have:

fX (x) =
exp

[
−1

2 (x − E[X ])T C−1
X (x − E[X ])

]
(2π)N/2 det(CX )1/2

For a Gaussian stochastic process X (t), the distribution of
X = [Xt1 ,Xt2 , ...,Xtk ]T is thus also given by fX (x).

For each collection of sample times t1, · · · , tk , we need to specify

The mean: µX = E[X ]; specify E[X (ti )] for all i ;

The (auto)covariance: cov[X ,X ] = CX ;
specify cov[X (ti ),X (tj)] for all i , j .
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Expected value of a stochastic process

Expected value of X (tk) at time tk :

E[X (t)] =

∫ ∞
−∞

x fX (t)(x) dx
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Autocovariance of a stochastic process

cov[X (t1),X (t2)] indicates how much the process is likely to change
from t1 to t2.

Large covariance: sample function unlikely to change.

Zero covariance: sample function expected to change rapidly.
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Autocovariance and autocorrelation
The covariance of a stochastic process at two different time instances is
called “autocovariance”:

CX (t, τ) = cov[X (t),X (t + τ)]

= E [(X (t)− E[X (t)]) (X (t + τ)− E[X (t + τ)])]

= E[X (t)X (t + τ)]︸ ︷︷ ︸
Similar to crosscorrelation E[XY ]

−E[X (t)]E[X (t + τ)]

The autocorrelation is similarly defined as

RX (t, τ) = E[X (t)X (t + τ)]

CX (t, τ) = RX (t, τ) − E [X (t)] E [X (t + τ)]

CX (t, 0) = E[X (t)2] − E[X (t)]2 = var[X (t)]

5. stochastic processes 25 / 46



The Autocorrelation function

Notice that exact formulation of the autocorrelation depends on
whether time and amplitudes are discrete or continuous:

RX (t, τ) = E[X (t)X (t + τ)] =

∫∫
x y fX (t),X (t+τ)(x , y) dxdy

RX (t, τ) = E[X (t)X (t + τ)] =
∑
x

∑
y

xyP[X (t) = x ,X (t + τ) = y ]

RX [n, k] = E[XnXn+k ] =

∫∫
x y fXn,Xn+k

(x , y) dxdy

RX [n, k] = E[XnXn+k ] =
∑
x

∑
y

xyP[Xn = x ,Xn+k = y ]
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Example: sinusoidal process

Random process: X (t) = A sin(ωt + Φ)

Amplitude A and phase Φ are independent random variables, where

A is uniformly distributed on [−1,+1]

Φ is uniformly distributed on [0, 2π]
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Example: sinusoidal process

RX (t, τ) = E[X (t)X (t + τ)]

= E[A2 sin(ωt + Φ) sin(ω(t + τ) + Φ)]

= E[A2] E[sin(ωt + Φ) sin(ω(t + τ) + Φ)]

=

∫ 1

−1

a2

2
da E[sin(ωt + Φ) sin(ω(t + τ) + Φ)]

=
1

3
E[sin(ωt + Φ) sin(ω(t + τ) + Φ)]

=
1

6
E[cos(ωτ)− cos(2ωt + ωτ + 2Φ)]

=
1

6
cos(ωτ)− 1

6
E[cos(2ωt + ωτ + 2Φ)]︸ ︷︷ ︸

=0

=
1

6
cos(ωτ)

5. stochastic processes 28 / 46



Example: sinusoidal process

RX (t, τ) = 1
6 cos(ωτ)

High correlation for ωτ = 0,±2π, · · ·
Zero correlation for ωτ = ±1

2π, · · ·
Very negative correlation for ωτ = ±π, · · ·
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Uncorrelated and orthogonal processes

If all pairs X (t),X (t + τ) are uncorrelated, i.e.,

CX (t, τ) =

{
var[X (t)] ∀ t and τ = 0

0 ∀ t and τ 6= 0

then X (t) is called an uncorrelated process.

If all pairs X (t),X (t + τ) are orthogonal, i.e.,

RX (t, τ) =

{
E[X 2(t)] ∀ t and τ = 0

0 ∀ t and τ 6= 0

then X (t) is called an orthogonal process
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Problem 13.7.2
For the time-delayed ramp process X (t) = t −W from Problem 13.2.1,
find for any t ≥ 0:

(a) The expected value µX (t),
(b) The autocovariance function CX (t, τ).

Hint: E[W ] = 1 and E[W 2] = 2.

(a) The mean is
µX (t) = E[t −W ] = t − E[W ] = t − 1.

(b) The autocovariance is

We know but don’t need:

fX (t)(x) =

{
ex−t x < t

0 o.w.

CX (t, τ) = E[X (t)X (t + τ)]− µX (t)µX (t + τ)

= E[(t −W )(t + τ −W )]− (t − 1)(t + τ − 1)

= t(t + τ)− E[(2t + τ)W ] + E[W 2]− (t − 1)(t + τ − 1)

= −(2t + τ)E[W ] + 2 + 2t + τ − 1 = 1
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Stationary Process

A stochastic process is stationary if and only if every joint-PDF is shift
invariant:

fX (t1),X (t2),··· ,X (tk )(x1, x2, · · · , xk)

= fX (t1+∆t),X (t2+∆t),··· ,X (tk+∆t)(x1, x2, · · · , xk)

Consequence I The marginal PDF’s are independent of t:

fX (t)(x) = fX (t+∆t)(x) = fX (x)

The marginal PDF’s are identical for all tk !

⇒ Expected value and variance are time independent.
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Problem 13.8.2

X = [X1 X2]T has expected value E[X ] = 0 and covariance matrix

CX =

[
2 1
1 1

]
Does there exist a stationary process X (t) and time instances t1 and t2

such that X is actually a pair of observations [X (t1) X (t2)]T of the
process X (t)?

The short answer is No. For the given process X (t),

var[X (t1)] = C11 = 2, var[X (t2)] = C22 = 1 .

However, stationarity of X (t) requires var[X (t1)] = var[X (t2)], which is
a contradiction.
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Stationary process

Consequence II The 2D joint-PDF is shift invariant

fX (t1),X (t2)(x1, x2) = fX (t1+∆t),X (t2+∆t)(x1, x2)

= fX (0),X (t2−t1)(x1, x2)

⇒ only the “distance” τ between t2 and t1 matters.

RX (t, τ) = RX (τ)

CX (t, τ) = CX (τ) = RX (τ)− E[X ]2

5. stochastic processes 34 / 46



Stationary process

Examples of stationary processes

iid process; e.g. Bernoulli process

Poisson process (random arrival process, ch. 13.4; we skip this)

Remember the PMF for the Bernoulli stochastic process:

PX (x) =
k∏

i=1

pxi (1− p)1−xi = px1+···+xk (1− p)k−(x1+···+xk )

which does not depend on the actual time.

Non-stationary processes are difficult to model and to handle in practice.
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Problem 13.8.4
Let X (t) be a stationary continuous-time random process. By sampling
X (t) every ∆ seconds, we obtain the discrete-time random sequence
Yn = X (n∆). Is Yn a stationary sequence?

Since Yni+k = X ((ni + k)∆) for a set of time samples n1, · · · , nm
fYn1+k ,··· ,Ynm+k

(y1, · · · , ym) = fX ((n1+k)∆),··· ,X ((nm+k)∆)(y1, · · · , ym) .

Since X (t) is a stationary process,

fX ((n1+k)∆),··· ,X ((nm+k)∆)(y1, · · · , ym) = fX (n1∆),··· ,X (nm∆)(y1, · · · , ym) .

Since X (ni∆) = Yni , we see that

fYn1+k ,··· ,Ynm+k
(y1, · · · , ym) = fYn1 ,··· ,Ynm

(y1, · · · , ym)

Hence, Yn is a stationary sequence.
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Wide-Sense Stationary (WSS) Processes

To show that a process is stationary, we need the overall joint-PDF.

– Quite impossible to get, except for special cases.

However, we can often estimate the process’

– Expected value

– Autocorrelation function

If only the expected value and the autocorrelation function satisfy the
property of stationarity, we call this process wide sense stationary
(WSS).

– Hence, we don’t know anything about other properties of the
process!
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Wide-Sense Stationary (WSS) Processes

A process is wide-sense stationary, if and only if

– The expected value E[X (t)] does not depend on time:
E[X (t)] = c .

– The autocorrelation function only depends on the time difference
τ and not the absolute time t:

RX (t, τ) = RX (τ)

or
RX [n, k] = RX (k)

Example: sinusoidal random process, X (t) = sin(ωt + Φ) where Φ is
uniformly distributed on [0, 2π]: derive that

CX (τ) = RX (τ) =
1

2
cos(ωτ)
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Problem 13.9.3 (important for later!)

True or False: If Xn is a wide sense stationary random sequence with
E[Xn] = c , then Yn = Xn − Xn−1 is a wide sense stationary random
sequence.

True: First we observe that E[Yn] = E[Xn]− E[Xn−1] = 0, which does
not depend on n. Second, we verify that

RY [n, k] = E[YnYn+k ]

= E[(Xn − Xn−1)(Xn+k − Xn+k−1)]

= E[XnXn+k ]− E[XnXn+k−1]− E[Xn−1Xn+k ] + E[Xn−1Xn+k−1]

= RX [k]− RX [k − 1]− RX [k + 1] + RX [k] ,

which does not depend on n. Hence, Yn is WSS.
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Problem 13.9.6
X (t) and Y (t) are independent wide sense stationary processes.
Determine if W (t) = X (t)Y (t) is wide-sense stationary.

True: Independence of X (t) and Y (t) implies

E[W (t)] = E[X (t)Y (t)] = E[X (t)] E[Y (t)] = µX µY

and

RW (t, τ) = E[W (t)W (t + τ)]

= E[X (t)Y (t)X (t + τ)Y (t + τ)]

= E[X (t)X (t + τ)Y (t)Y (t + τ)]

= E[X (t)X (t + τ)] E[Y (t)Y (t + τ)] (by independence)

= RX (τ)RY (τ)

Since W (t) has constant expected value and the autocorrelation
depends only on the time difference τ , W (t) is wide-sense stationary.
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WSS Processes and the autocorrelation function

Important properties of RX (τ) for WSS processes:

RX (0) ≥ 0

RX (τ) = RX (−τ)

RX (0) ≥ |RX (τ)|

Example:

RX (t, τ) =
1

6
cos(ωτ)
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Cross correlation for Stochastic Processes
In addition to the autocorrelation function, we can also define the
cross-correlation between two stochastic processes:

RXY (t, τ) = E[X (t)Y (t + τ)]

RXY [n, k] = E[XnYn+k ]

Two random processes X (t) and Y (t) are jointly wide sense
stationary, if X (t) and Y (t) are wide sense stationary and

RXY (t, τ) = RXY (τ).

If X (t) and Y (t) are jointly WSS, then

RXY (τ) = RYX (−τ).

(and of course similar for time-discrete processes)
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Example

Xn is a zero mean WSS stochastic process. Let Yn = (−1)nXn .

E[Yn] = (−1)nE[Xn] = 0, since Xn is zero mean.

RY [n, k] = E[YnYn+k ]
= E[(−1)nXn(−1)n+kXn+k ]
= (−1)2n+kE[XnXn+k ] = (−1)kRX [k]

Process Yn is WSS as RY [n, k] only depends on k .

RXY [n, k] = E[XnYn+k ]
= E[Xn(−1)n+kXn+k ]
= (−1)n+kE[XnXn+k ] = (−1)n+kRX [k]

Xn and Yn are not jointly WSS as their cross-correlation function
depends on both n and k .
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Problem 13.10.2
X (t) is a wide sense stationary random process. Let

(a) Y (t) = X (t + a)

Are Y (t) and X (t) jointly wide sense stationary?

Since E[Y (t)] = E[X (t + a)] = µX and

RY (t, τ) = E[Y (t)Y (t + τ)]

= E[X (t + a)X (t + τ + a)] = RX (τ) ,

we have verified that Y (t) is wide sense stationary. Next we calculate
the cross correlation:

RXY (t, τ) = E[X (t)Y (t + τ)]

= E[X (t)X (t + τ + a)] = RX (τ + a) .

Since RXY (t, τ) depends on the time difference τ but not on the
absolute time t, we conclude that X (t) and Y (t) are jointly wide sense
stationary.
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Problem 13.10.2
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Problem 13.10.2 (cont’d)
Now repeat for

(b) Y (t) = X (at)

Since E[Y (t) = E[X (at)] = µX and

RY (t, τ) = E[Y (t)Y (t + τ)]

= E[X (at)X (a(t + τ))]

= E[X (at)X (at + aτ)] = RX (aτ) ,

we have verified that Y (t) is wide sense stationary. Now we calculate
the cross correlation:

RXY (t, τ) = E[X (t)Y (t + τ)]

= E[X (t)X (a(t + τ))] = RX ((a− 1)t + aτ) .

Except for the trivial case where a = 1 and Y (t) = X (t), RXY (t, τ)
depends on both the absolute time t and the time difference τ : we
conclude that X (t) and Y (t) are not jointly wide sense stationary.
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Now repeat for

(b) Y (t) = X (at)

Since E[Y (t) = E[X (at)] = µX and

RY (t, τ) = E[Y (t)Y (t + τ)]

= E[X (at)X (a(t + τ))]

= E[X (at)X (at + aτ)] = RX (aτ) ,
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To do for this lecture:

Make some selected exercises:

13.1.1, 13.3.1, 13.7.1, 13.7.3, 13.7.5, 13.9.3, 13.9.5, 13.9.7, 13.10.1,
13.10.3

Next lecture, we’ll wrap up Ch.13 (ergodicity), and start with
Supplement Sections 1 and 2.
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