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Today: Ch. 13 Stochastic Processes

m Stochastic: random

m Process: sequence of variables where the ordering is of importance.

X(s)=X
X

S

[WWMW" X(t,s) =X(t)

= Random variable: Mapping from an outcome s in the sample space
to a real number x(s).

m Stochastic process: Mapping from an outcome s in the sample
space to a function x(t,s), which depends on an ordering variable like
time or space: a random signal.
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Stochastic Processes

m The stochastic process is denoted by X(t).

m Sample function x(t, s1) is one particular realization (outcome s;) of
this process.

x(t.s,)
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The ensemble of a stochastic process is the set of all possible time
functions that can result from an experiment.
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Problem 13.1.3

Consider the transmission of 3 bits in a BPSK system (binary phase
shift keying):

S € {000,001, 010,011,100, 101,110,111}

The ensemble consists of 8 possible sample functions:

o(t,51) ° } ; . /{
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Example: speech

m Experiment ‘s": pronounce ‘ssss’

z(t, s1)
“SSSS"
<;f x(t9 82)
AL
(5
z(t, s3)
Ensemble

m Sample function: one realization of the waveform x(t, s)
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Example: arrival times of data packets
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Example: binary bit pattern

X3 =000011111100000111101010001110000000000111010
X737 =011110011100110101111010100011100010010100001
X55 = 000000001111111111111010011111111111100111110

m A stochastic description can be used for image compression.
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Example: handwritten digits

3003

m A stochastic description (features!) is used for pattern recognition.
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Example: linear filtering of a stochastic process

[ s

X(t) —| '}'l'zf)a’ system (LT L, y(t) = h(t) + X (1)

How can we describe Y'(t) when X(t) is a stochastic process?

Statistical descriptions of X(t):  Statistical descriptions of Y(t):
® mean /ix = mean py = pix [, h(t)dt

m Autocorrelation function Rx (7). m Ry(7) = h(7)* h(—7) * Rx (7).

This will be the topic of the Supplement (next weeks)
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Description of a random process

m How to describe a stochastic process at one time instance: e.g.,
X(tl)?

m How to describe a stochastic process at multiple time instances: e.g.,
[X(t1), X(2)]7?
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Description of a random process
Similar as for RVs, we can use the PDF/PMF to describe stochastic

processes:

m At any (fixed) time t, the stochastic process can be regarded as a
random variable:

X(tk) ~ fx, (xt,)
This PDF may be different for each ;!

m The joint behavior for multiple time instances t, i.e., t, -, t) is
given by the joint PDF:

[X(t1),--- 7X(tk)v"']T ~ th17Xt27"'7th7"'(xtl7xt27”. Xty )
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Example: rectified sinusoid with random amplitude

Let X(t) = R|cos(wt)| with

1 ,—r/10 >0
fa(r) = 10° -
0 otherwise

Calculate fy(¢)(x)!

Approach

m First calculate the CDF Fx(,)(x)

® Then calculate the PDF fy(;)(x) = 4 Fx(1)(x)
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Example: rectified sinusoid with random amplitude

Fxp(x) = P[X(t) <«
= P[R|cos(wt)| < x]
P[R < x/| cos(wt)|] if cos(wt) #0

x/| cos(wt)|
= / fr(r)dr
0

= 1l—e 10|co);(wt)| if x 2 0

m If cos(wt) # 0:

0 x <0
FX(t)(X) = {1 _ o ToTcos@)] x > 0.
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Example: rectified sinusoid with random amplitude

m If cos(wt) # 0:

0 x <0

e_ 10] cos(wt)] X 2 O

dFx(e)(x)
fx(t)(x) = % = {

1
10| cos(wt)]

m If cos(wt) = 0, then X(t) = 0 (constant) and fx (4 (x) = d(x).
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Problem 13.2.1 (similar: 13.2.4)

Let W be an exponential random variable with PDF

v (w) = {e_w v =0

0 otherwise

Find the CDF Fx(4)(x) of the time-delayed ramp process X(t) =t — W.

1"‘U Delft 5. stochastic processes



Problem 13.2.1 (similar: 13.2.4)

Let W be an exponential random variable with PDF

v (w) = {e_w v =0

0 otherwise

Find the CDF Fx(4)(x) of the time-delayed ramp process X(t) =t — W.

PIX(t)<x] = P[t—W <x] = PIW >t —x].

Since W >0, if x > t then P[W >t — x] = 1. When x < t,

[e.e]
PIW>t—x] = / fw(w)dw = e~ (=)

t—x
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Problem 13.2.1 (cont'd)

Combining the facts, we have

x <t

e—(t—x)
FX(t)(X):P[WZt—X]: 1 -

We note that the CDF contains no discontinuities. Taking the
derivative of the CDF with respect to x, we obtain the PDF

e (t=x) x <t
f -
X(t)(X) {0 x>t

® Treat t as a constant
* Calculate CDF Fx(y(x)
® Then calculate PDF fx()(x)
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Description of a random process
Notice that
-
[X(t1), - X(t), -] ~ th17Xt27‘“7th7“‘(Xt17Xt27 T Xe )
resembles a vector random variable,

m but can be of infinite dimensionality,

m and ordering (in time) of the X(ty) is essential.

Generally, the joint PDF is very difficult to acquire. Exceptions:

» Independent identically distributed (iid) random sequence/process
m Gaussian stochastic process

m Poisson process (skipped), Brownian motion process (skipped)
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Independent identically distributed (iid) random sequences
For an iid random sequence

m all X(tx) are mutually independent random variables for all ty,

m all X(tx) have the same PDF for all t.

Let X, denote a (time discrete) iid random sequence with sample vector
T
X =[Xn, -, Xn] -

m For a discrete valued X,,, the joint PMF is

Px(X) = le(Xl) ka Xk H PX X,

m For a continuous valued X, the joint PDF is

fx(x) = fx, (1) - i, (i) = [ ] x(xi)
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Example: Bernoulli process (time discrete)
One realization of a Bernoulli process (e.g., a bit sequence)

1E4 3 45 H 4 S HE Y S RS +
038
o8|

o4l =

o2 —

O [ - -, ot Hekd S

" . N L n " " " L n

o 10 20 30 40 50 80 70 8l a0 100

PMF for one time instance k:

p xe=1 Xk 1—
1-— X x,=0,1
PXk(Xk) =<1 P Xk = 0 = PXk(Xk) = p ( P) K .
) otherwise
0 otherwise
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Example: Bernoulli process (cont'd)

pP(1—p)t x. =0,1

0 otherwise

PXk(Xk) - {

For two time instances t; and t, we obtain (iid process!)

Pxixo(x1,0) = Px(x1)Px(x) = p(1 — p)tp2(1 — p)t~>
pX1+X2(1 _ p)2*X1*X2

For k time instances we obtain

k

PX(X) = pri(l — p)lfx,- _ pX1+---+xk(1 B p)k*(xl+"'+xk)
i=1
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Gaussian Process

Gaussian processes occur quite often in nature (remember the central
limit theorem!)

The process X(t) is a Gaussian stochastic process (sequence) if and
only if X = [X(t;) --- X(tx)]" is a Gaussian random vector for any
integer k > 0 and any set of time instances t1, to,- - - , tx.

vt A A (2, 51)

] 20 40 60 80 100 120 140 160 180 200

iy it v 259
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Gaussian Process

Remember that for Gaussian random vectors X = [X1, Xo, -+, Xy]T we

have:
e —3 (x —E[X])T Cx" (x — E[X])

x(x) = (27) V72 det(Cx) /2

For a Gaussian stochastic process X(t), the distribution of
X = [Xy,, Xsyy s Xe, ] T is thus also given by fx(x).

For each collection of sample times t1, - - - , t,, we need to specify

m The mean: px = E[X]; specify E[X(t;)] for all /;

m The (auto)covariance: cov[X, X]| = Cx;
specify cov[X(t;), X(t;)] for all 7,;.

4 .
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Expected value of a stochastic process

Expected value of X(t) at time t:

EX(0)] = [ xqo () dx

—00
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Autocovariance of a stochastic process

X(t1) X(t2)=X({t1+7)
m cov[X(t1), X(t2)] indicates how much the process is likely to change
from t; to ts.
m Large covariance: sample function unlikely to change.

m Zero covariance: sample function expected to change rapidly.
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Autocovariance and autocorrelation

The covariance of a stochastic process at two different time instances is
called “autocovariance”:

Cx(t,7) = cov[X(t), X(t+ 7)]
= E[(X(t) — E[X(8)]) (X(t +7) — E[X(t + 7)])]
— EIX()X(t+7)]  —E[X(t)[E[X(t+7)]

Similar to crosscorrelation E[XY]

The autocorrelation is similarly defined as

Rx(t,7) = E[X(t)X(t + 7)]

Cx(t,7) = Rx(t,7) — E[X(D]E[X(t +7)]
Cx(t,0 E[X(£)3] — E[X(t)2 = var[X(t)]

~— ~—
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The Autocorrelation function

Notice that exact formulation of the autocorrelation depends on
whether time and amplitudes are discrete or continuous:

Rx(t,7) = E[X(0)X(t+7)] = / / Xy Fgey x(esn) (%, ¥) dxdy

Rx(t,7) = E[X(t)X t—l—T]—ZnyP[X )=x,X(t+7)=y]

Rx[n, k] = E[XaXnik] = //Xy X X (X5 ) dxdy

Rx[m Kkl = E[XaXori]l =D Y xyP[Xn = x, Xprk = y]

x y
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Example: sinusoidal process

Random process: X(t) = Asin(wt + @)
Amplitude A and phase ® are independent random variables, where

m A is uniformly distributed on [—1, +1]
m & is uniformly distributed on [0, 27]

5. stochastic processes
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Example: sinusoidal process

3
TUDelft

Rx(t,’i’)

E[X(t)X(t + 7)]
E[A%sin(wt + @) sin(w(t 4 7) + ®)]

E[A?] E[sin(wt + ®) sin(w(t + 7) + )]
1 2
/1 %da E[sin(wt 4+ ®) sin(w(t + 7) + P)]

% E[sin(wt + @) sin(w(t + 7) + P)]

1
6 E[cos(wT) — cos(2wt + wT + 29)]

1 1
6 cos(wT) — 6 E[cos(2wt 4+ wT + 29)]

=0

1
6 cos(wT)
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Example: sinusoidal process

Rx(t, 1) = %COS(LUT)

High correlation for wr = 0, 27, - - -
Zero correlation for wr = ﬂ:%ﬂ', e

Very negative correlation for wr = £, - -
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Uncorrelated and orthogonal processes

m If all pairs X(t), X(t + 7) are uncorrelated, i.e.,

Cx(t.7) var[X(t)] Vtand 7=0
’T -
x 0 Vtand T #0

then X(t) is called an uncorrelated process.

m If all pairs X(t), X(t + 7) are orthogonal, i.e.,

Ry(t.7) E[X%(t)] VtandT=0
77— =
x 0 Vtand 7 # 0

then X(t) is called an orthogonal process

5. stochastic processes
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Problem 13.7.2

For the time-delayed ramp process X(t) = t — W from Problem 13.2.1,
find for any t > 0:

(a) The expected value 11x(t),
(b) The autocovariance function Cx(t, 7).
Hint: E[W] = 1 and E[W?] = 2.
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Problem 13.7.2

For the time-delayed ramp process X(t) = t — W from Problem 13.2.1,
find for any t > 0:

(a) The expected value 11x(t),
(b) The autocovariance function Cx(t, 7).
Hint: E[W] = 1 and E[W?] = 2.

We know but don't need:
(a) The mean is

X—t
ux(t) =E[t—W]=t—E[W]=t-1. fx(t)(x):{g x <t
(b) The autocovariance is o.w.

Cx(t,7) = E[X()X(t+ 7)] — px(t)pux(t + 7)

E[(t —W)(t+7 - W) - (t-1)(t+7-1)

t(t+7) — E[(2t + T)W] + E[W?] — (t = 1)(t +7—1)
= —(2t+7n)EW]+2+2t+7-1 =1
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Stationary Process

A stochastic process is stationary if and only if every joint-PDF is shift
invariant:

fX(tl),X(tz),--- ,X(tk)(X17X27 o 7Xk)

= FX(408) X (A1), X(t+At) (X1 X2, 5 Xk)

m Consequence | The marginal PDF's are independent of t:

fx(e)(X) = fx(e+ae)(x) = fx(x)

The marginal PDF’s are identical for all t;!

= Expected value and variance are time independent.

<3
TUDelft
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Problem 13.8.2

X = [X1 Xo]" has expected value E[X] = 0 and covariance matrix
21
=[]
Does there exist a stationary process X(t) and time instances t; and

such that X is actually a pair of observations [X(t1) X(t)]” of the
process X(t)?
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Problem 13.8.2

X = [X1 Xo]" has expected value E[X] = 0 and covariance matrix
21
=[]
Does there exist a stationary process X(t) and time instances t; and

such that X is actually a pair of observations [X(t1) X(t)]” of the
process X(t)?

The short answer is No. For the given process X(t),
var[X(t1)] = Gi1 =2, var[X(t)]=Cp =1.

However, stationarity of X(t) requires var[X(t1)] = var[X(t2)], which is
a contradiction.
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Stationary process

m Consequence Il The 2D joint-PDF is shift invariant

fx(t)X(0) (X1, %) = fx(a+ae)X(a+at) (X1, x2)
= fx0)X(t—t:) (X1, X2)

= only the “distance” 7 between t, and t; matters.

Rx(t,T) = Rx(T)
Cx(t,7) = Cx(r) = Rx(r)—E[X]?

?U Delft 5. stochastic processes



Stationary process

Examples of stationary processes

m iid process; e.g. Bernoulli process

m Poisson process (random arrival process, ch. 13.4; we skip this)

Remember the PMF for the Bernoulli stochastic process:

k

Px(x) = pr"(l — )t = pratbx(q — pyk—Catba)
i=1

which does not depend on the actual time.

Non-stationary processes are difficult to model and to handle in practice.
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Problem 13.8.4

Let X(t) be a stationary continuous-time random process. By sampling
X(t) every A seconds, we obtain the discrete-time random sequence
Y, = X(nA). Is Y, a stationary sequence?

<3
TUDelft
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Problem 13.8.4

Let X(t) be a stationary continuous-time random process. By sampling
X(t) every A seconds, we obtain the discrete-time random sequence
Y, = X(nA). Is Y, a stationary sequence?

m Since Y, .« = X((n;j + k)A) for a set of time samples ny,--- , np,

Bk Yok V1705 Ym) = X (g4 k) A, X (b)) (VLo Yim) -

m Since X(t) is a stationary process,

EX((m+k)A), - X (k)Y (V15 5 Ym) = (), X(nma) (V15 5 Ym) -

m Since X(n;A) =Y., we see that

fyn]_+k7"'7ynm+k(y1’ o ,}/m) - fYnl,“anm()qa t ,ym)

Hence, Y, is a stationary sequence.
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Wide-Sense Stationary (WSS) Processes

m To show that a process is stationary, we need the overall joint-PDF.
— Quite impossible to get, except for special cases.

m However, we can often estimate the process’
— Expected value

— Autocorrelation function

m If only the expected value and the autocorrelation function satisfy the
property of stationarity, we call this process wide sense stationary

(WSS).

— Hence, we don't know anything about other properties of the
process!
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Wide-Sense Stationary (WSS) Processes

m A process is wide-sense stationary, if and only if

— The expected value E[X(t)] does not depend on time:
E[X(t)] = c.

— The autocorrelation function only depends on the time difference
7 and not the absolute time t:

Rx(t,7) = Rx(7)

or
Rx[n, k] = Rx(k)

m Example: sinusoidal random process, X(t) = sin(wt + ®) where ® is
uniformly distributed on [0, 27]: derive that

Cx(7) = Rx(7) = %cos(wT)
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Problem 13.9.3 (important for later!)

True or False: If X, is a wide sense stationary random sequence with
E[X,] = ¢, then Y,, = X,, — X,,_1 is a wide sense stationary random
sequence.
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Problem 13.9.3 (important for later!)

True or False: If X, is a wide sense stationary random sequence with
E[X,] = ¢, then Y,, = X,, — X,,_1 is a wide sense stationary random
sequence.

True: First we observe that E[Y,| = E[X,,] — E[X,_1] = 0, which does
not depend on n. Second, we verify that

Ry[n, k] = E[YaYni«]
= E[(Xn = Xo—1)(Xntk — Xntk-1)]

- E[XanJrk] - E[Xan+k71] - E[Xn—lxn+k] + E[Xn—IXnJrkfl]
Rx[K] — Rx[k — 1] — Rx[k + 1] + Rx[k],

which does not depend on n. Hence, Y, is WSS.
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Problem 13.9.6

X(t) and Y(t) are independent wide sense stationary processes.
Determine if W(t) = X(t)Y(t) is wide-sense stationary.
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Problem 13.9.6

X(t) and Y(t) are independent wide sense stationary processes.
Determine if W(t) = X(t)Y(t) is wide-sense stationary.

True: Independence of X(t) and Y/(t) implies
E[W(8)] = E[X(2) Y ()] = EIX(D)] E[Y (£)] = px py
and
Rw(t,7) = E[W(t)W(t+ 7)]

= E[X(@)Y(t)X(t+7)Y(t+7)]
= E[X(t)X(t+7)Y(t)Y(t+7)]
= E[X(t)X(t+ 7)]E[Y(t)Y(t+ 7)] (by independence)
= Rx(7)Ry(7)

Since W/(t) has constant expected value and the autocorrelation
depends only on the time difference 7, W (t) is wide-sense stationary.
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WSS Processes and the autocorrelation function

Important properties of Rx(7) for WSS processes:

Rx(0) > 0
Rx(t) = Rx(—1)
Rx(0) = [Rx(7)|

Example:

1
Rx(t,7) = 6 cos(wT)
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Cross correlation for Stochastic Processes

In addition to the autocorrelation function, we can also define the
cross-correlation between two stochastic processes:

Rxy(t,7) = E[X(t)Y(t+ 7)]
ny[n,k] = E[XnYn+k]

m Two random processes X(t) and Y(t) are jointly wide sense
stationary, if X(t) and Y(t) are wide sense stationary and

ny(t, 7') = ny(T).

m If X(t) and Y(t) are jointly WSS, then
Rxy(7) = Ryx(—7).

(and of course similar for time-discrete processes)
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Example

X, is a zero mean WSS stochastic process. Let Y, = (—1)"X,.

m E[Y,] = (—1)"E[X,] = 0, since X, is zero mean.

] Ry[n, k] = E[YnYn+k]
— E[(~ 1) Xa(— )" X 1]
— (CLPTREXuXak] = (—1)¥Rx[K]
Process Y, is WSS as Ry|[n, k| only depends on k.

] ny[n, k] = E[Xnyn+k]
= E[Xa(—1)" X4l
— (—1)"HE[XoXpik] = (—1)"T4Rx[A]
X, and Y, are not jointly WSS as their cross-correlation function
depends on both n and k.
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Problem 13.10.2

X(t) is a wide sense stationary random process. Let
(a) Y(t)=X(t+a)
Are Y(t) and X(t) jointly wide sense stationary?
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Problem 13.10.2

X(t) is a wide sense stationary random process. Let
(a) Y(t)=X(t+a)
Are Y(t) and X(t) jointly wide sense stationary?
Since E[Y(t)] = E[X(t + a)] = pux and
Ry(t,7) = E[Y()Y(t+7)]
= E[X(t+a)X(t+7+a) = Rx(7),
we have verified that Y'(t) is wide sense stationary. Next we calculate
the cross correlation:
Rxy(t,7) = E[X(t)Y(t+ )]
= EX(t)X(t+7+a)] = Rx(t+a).
Since Rxy(t,7) depends on the time difference 7 but not on the

absolute time t, we conclude that X(t) and Y(t) are jointly wide sense
stationary.
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Problem 13.10.2 (cont'd)

Now repeat for
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Problem 13.10.2 (cont'd)

Now repeat for

Since E[Y(t) = E[X(at)] = px and
Rv(t,r) = EIV(§)Y(t+7)
= E[X(at)X(a(t+ 7))]
= E[X(at)X(at + ar)] = Rx(aT),

we have verified that Y'(t) is wide sense stationary. Now we calculate
the cross correlation:

Rxy(t,7) = E[X(t)Y(t+7)]
= E[X(t)X(a(t+7))] = Rx((a—1)t+ar).
Except for the trivial case where a =1 and Y(t) = X(t), Rxy(t,7)

depends on both the absolute time t and the time difference 7: we
conclude that X(t) and Y(t) are not jointly wide sense stationary.
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To do for this lecture:

m Make some selected exercises:

13.1.1, 13.3.1, 13.7.1, 13.7.3, 13.7.5, 13.9.3, 13.9.5, 13.9.7, 13.10.1,
13.10.3

Next lecture, we'll wrap up Ch.13 (ergodicity), and start with
Supplement Sections 1 and 2.

4 .
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