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Overview and applications

Multirate systems

Multirate systems use different sampling rates at different stages of the
digital processing.

Examples:

● telecommunication systems (speech, video)

● digital antialiasing (CD players)

● subband coding for speech and audio

● multimodal biomedical monitoring (EEG, ECG)
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Decimation by a factor M

T ′
s =MT ⇒ xD[n] = xa(nT ′

s) = xa(nMTs) = x[nM]

Decimation is a linear time-varying operation!
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Decimation by a factor M
Spectrum of the decimated signal:

The spectrum of the decimated signal XD(ω) consists of shifted and
stretched copies of the original spectrum X (ω). (Note, x[n] is digital,
so X (ω) is already periodic!)
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Decimantion by a factor M
How to avoid aliasing?

We need to use an anti-aliasing decimationfilter (low-pass filter) with
cut-off at π

M .
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Interpolation with a factor L

Interpolation (=upsampling) with a factor L means to insert L− 1 zeros:

xE [n] =
⎧⎪⎪⎨⎪⎪⎩

x[k], n = kL

0, otherwise

The sampling rate of the signal increases by a factor L. There is no
information loss!
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Interpolation with a factor L

XE(z) = X (zL), XE(ω) = X (ωL)

● The spectrum of the signal contracts
with a factor L, and L − 1 copies
occur in the fundamental interval.

● We can remove the copies using a
digital low-pass filter

● the overall system (i.e. sampling with
1/Ts , upsampling and filtering) is
then equivalent with a system
sampled at a rate of L/Ts .
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Sampling rate conversion by factor L/M

We can combine upsampling with L and downsampling with M to
implement a sampling rate conversion with any rational factor L/M.

The two low-pass filters can be combined in one with a cut-off of
ωc = min(π/L, π/M).

Can we do the other way around, first decimate then interpolate?
(Would that give the same output signal?)
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Sampling rate conversion by factor L/M

Exercise 11.9:

General rule: y0 = y1 if and only if L and M are relative primes!
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Implementation of sampling rate conversion

Goal

Efficiently implement multirate conversion systems

Example:

Note: In general, we cannot swap a filter and a sampling rate converter!
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Implementation of sampling rate conversion

Objective

Let’s modify the filter realisation such that filters and sampling rate
converters can be swapped.

Outcome

The resulting circuit is overall more efficient

Two ingredients:

● Polyphase filter structures

● Noble identities
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Polyphase filter structures

H(z) = b0 + b1z
−1 + b2z

−2 + b3z
−3 =

= (b0 + b2z
−2) + z−1(b1 + b3z

−2) =
= P0(z2) + z−1P1(z2)
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Noble identities
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Example

How to efficiently implement the following system:
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Example

Step 1 (2 possibilities):

Which one is more efficient (in terms of the rate at which the filters
operate?)
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Example

Step 2 (let us work further on option 2):
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Example

Most efficient implementation:

Now filters run at 4/3 kHz.
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● Overview and applications
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● Implementation of sampling rate conversion
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Exercise: Resit 2021 Q6

Given a multirate conversion system with a block scheme shown below
with L=2 and M=5. The sampling rate at the input is 100Hz. The
amplitude spectrum ∣X (ω)∣ of the input signal x[n] is also shown.
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Question 6.a

(a) Give a formula for Y1(ω) in terms of X (ω) and draw a graphic for
the amplitude spectrum ∣Y1(ω)∣!

A: Y1(ω) = X (2ω) (Attention: typo on website!)
The amplitude spectrum is shown below:

Figure
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Question 6.b

(b) Let us consider the implementation of the conversion system shown
in Fig. 2.

Figure

What is the role of the filters Pi(z) and how are they related to
H(z)?

A: Pi(z) are the polyphase representation of the filter H(z), that is
H(z) = P0(z2) + z−1P1(z2).

(c) At which rate do the filters operate in this implementation?

A: In the given implementation the filter operates at the same rate as
the input, i.e. 100Hz.
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Questions 6.c,d

(d) Draw an alternative, more efficient implementation of the multirate
conversion system (in terms of the rate at which the filters
operate!) At which rate do the filters operate now?

A: In the implementation below the filters operate at 40Hz (obtained
from the original block diagram by replacing H(z) with a
5-component polyphase filter and exchanging the order of the filter
and the downsampler):
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Exercise 8.8
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Decimation in Frequency (1)
Idea: split the regular DFT formula into two part, summing the first
and second half of the terms separately:
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Decimation in Frequency (2)

In words, the even coefficients of the N-point DFT of a given sequence
can be obtained as the N/2 DFT of a sequence obtained by summing
the first and second half of the original sequence. A similar statement
can be made for the odd coefficient (making a subtraction instead of a
summation of the half sequences; followed by a multiplication with W n

N)
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Exercise 8.8 solution
For an 8-point DFT, a three-stage decimation-in-frequency procedure
leads to algorithm below, depicted on a butterfly diagram:
Use the butterlfy diagram below to perform the necessary computations!
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Exercise 6.18
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Quantization error
Mathematical model of quantization:

Assumptions:
● input signal x[n] is the realizatin of a zero-mean WSS process
● quantization noise is white
● quantization niose is uncorrelated to the input
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PSD of white noise
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Power of white noise
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Exercise 6.18

To calucate the SQNR, we have to calculate the power of the noise within the signal band.
The width of signal band (in normalized frequencies) depends on the ratio of the badnwidth and the sampling rate!

= 10 log10

σ2
x

2BPd

+ 10 log10 Fs

SQNR2 = log10

σ2
x

2BPd

+ 10 log10 2Fs = log10

σ2
x

2BPd

+ 10 log10 Fs + 10 log10 2 = log10

σ2
x

2BPd

+ 10 log10 Fs + 3
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Exercise 6.20
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6.20 (a)

H(z) = 1

1 − z−1

(X (z) −D(z))H(z) (A)

(X (z) −D(z))H(z) −D(z) (B)

[(X (z) −D(z))H(z) −D(z)]H(z)z−1 (C)

[(X (z) −D(z))H(z) −D(z)]H(z)z−1 + E(z) = D(z)

36 / 47



6.20 (a)

H(z) = 1

1 − z−1

(X (z) −D(z))H(z) (A)

(X (z) −D(z))H(z) −D(z) (B)

[(X (z) −D(z))H(z) −D(z)]H(z)z−1 (C)

[(X (z) −D(z))H(z) −D(z)]H(z)z−1 + E(z) = D(z)

36 / 47



6.20 (a)

[(X (z) −D(z))H(z) −D(z)]H(z)z−1 + E(z) = D(z)

[(X (z) −D(z)) 1

1 − z−1
−D(z)] 1

1 − z−1
z−1 −D(z) = E(z)

X (z) 1

1 − z−1

z−1

1 − z−1
−D(z) 1

1 − z−1

z−1

1 − z−1
−D(z) z−1

1 − z−1
−D(z) = E(z)

X (z) z−1

(1 − z−1)2
−D(z) 1

(1 − z−1)2
= E(z)

Hs(z) =
1

(1−z−1)2
z−1

(1−z−1)2
= z−1

Hn(z) = 1
1

(1−z−1)2
= (1 − z−1)2
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6.20 (b)
Question: plot and compare the magnitude of the frequency reponse of
the 1st and 2nd order system: Hn1(z) = (1 − z−1) and
Hn2(z) = (1 − z−1)2

Answer:
● frequency response: z = e jω

● magnitude: ∣H(ω)∣

∣Hn1(ω)∣ = (1 − e−jω) = ∣1 − cosω + j sinω∣ =
√

(1 − cosω)2 + sin2 ω =

=
√

(1 + cos2 ω − 2 cosω + sin2 ω =
√

2 − 2 cosω

cos 2x = cos2 x − sin2 x = 1 − 2 sin2 x → 1 − cos(2x) = 2 sin2 x

∣Hn1(ω)∣ =
√

2 − 2 cosω =
√

4 sin2 ω

2
= 2∣ sin

ω

2
∣→ 2∣ sin

πF

Fs
∣

∣Hn2(ω)∣ = 4 sin2 πF

Fs
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6.20 (b)

∣Hn1(ω)∣ =
√

2 − 2 cosω =
√

4 sin2 ω

2
= 2∣ sin

ω

2
∣→ 2∣ sin

πF

Fs
∣

∣Hn2(ω)∣ = 4 sin2 πF

Fs

σ2
n =

B

∫
−B

∣Hn(F )∣2Se(F )dF (book 6.6.11) →

→ factor of 4 reduction if B << Fs → 6dB
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6.20 (c)

σ2
n =

B

∫
−B

∣Hn(F )∣2Se(F )dF

=
B

∫
−B

∣Hn(F )∣2σ
2
e

Fs
dF = 2

B

∫
0

(4(sin
πF

Fs
)2)2σ

2
e

Fs
dF

for small x sin x ≈ x

2

B

∫
0

(4(πF
Fs

)2)2σ
2
e

Fs
dF = 32

π4σ2
e

F 5
s

B

∫
0

F 4dF =

32
π4σ2

e

F 5
s

1

5
(B5) = π

4σ2
e

5
(2B

Fs
)5
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Final exam 2021 Question 4

Let us consider a first-order IIR filter with impulse response

h(n) = 1

4
(1

2
)
n

u[n] + 1

3
(1

2
)
(n−1)

u[n − 1]

A direct form I realization of the filter is shown below.

The outputs of the multipliers in this system are quantized using a midtread quantizer and a
sign-magnitude coding scheme with 3 bits plus the sign bit. The quantizer can encode values
between (−1,1).
We model the effect of quantization as an additive noise source e(n), and we assume that
e(n) is an uncorrelated wide-sense stationary process that is uniformly distributed.
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Question 4a

(a) What is the variance of the quantization noise of this particular
quantizer?

A: σ2
E = ∆2

12 , where ∆ is the step size of the quantizer, that is

∆ = R
2b+1 = 2

23+1 = 0.125 with R the range of the quantizer and b is

the number of bits. So, σ2
E = 0.1252

12 = 0.0013 .
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Question 4b

(b) Now let us consider the quantization noise at the output of the filter. Compute the
variance of the quantization noise at the output of the filter!

A: For a given quantization noise source σ2
Q = σ2

E

∞
∑

n=−∞
∣h[n]∣2, where h[n] is the impulse

response of part of the system that the noise passes through. The total noise variance
is the sum of the output variance of all contributing noise sources. In our case, the
first noise source e1 (of multiplier a1 = 1

2
) passes through the whole system, while the

other two (e1 and e2, corresponding to b0 = 1
4

and b1 = 1
3

) appear directly at the
output. Therefore,

σ2
Qtotal = σ2

E1

∞
∑

n=−∞
∣h[n]∣2 + σ2

E2 + σ2
E3
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Question 4b (continued)
Let us write the impulse respone of the system in terms of the variables

for the clarity of the derivation: h[n] = b0a
n
1u[n] + b1a

(n−1)
1 u[n − 1]

For m = 0, the impulse response is h(0) = b0.
For m ≥ 1, sample m of the impulse reponse can be written as
h[m] = b0a1(a1)m−1 + b1(a1)m−1 Therefore,

∞
∑

n=−∞
∣h[n]∣2 = b2

0 +
∞
∑
m=1

(a1b0a
m−1
1 + b1a

m−1
1 )2 =

∞
∑
n=0

(a1b0a
n
1 + b1a

n
1)2

= b2
0 +

∞
∑
n=0

a2
1b

2
0a

2n
1 + b2

1a
2n
1 + a1b0b1a

2n
1

= b2
0 +

1

1 − a2
1

(a2
1b

2
0 + b2

1 + 2a1b0b1) = 0.34

Substituting back to the previous equation and using the answer to (a):

σ2
Qtotal = 0.0013 ⋅ (2 + 0.34) = 0.0030
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Please fill in the evaluation
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