Signal Processing EE2531

Digital Signal Processing
Lecture 6: Quantization and round-off effects

Borbala Hunyadi

Delft University of Technology, The Netherlands
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A/D converter
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Basic task: convert a continuous range of input amplitudes to a discrete
set of digital code words.

5
TUDelft 3/38



A/D converters

® sampling

® quantization

® coding

3
TUDelft



A/D converters

® sampling — lecture 1, 2

® quantization

® coding
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A/D converters

® sampling — lecture 1, 2

® quantization — a non-linear and non-invertible process that maps a
given amplitude x[n] = x,(nTs) at time t = nTs into an amplitude
Rk taken from a finite set of values (quantization level or alphabet)

® coding
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A/D converters

® sampling — lecture 1, 2

® quantization — a non-linear and non-invertible process that maps a
given amplitude x[n] = x,(nTs) at time t = nTs into an amplitude
Rk taken from a finite set of values (quantization level or alphabet)

* coding — assigns a unique binary number (code) to each and every
quantization level. This process is invertible (lossless).
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Quantization

An L-level quantizer is characterized by

a set of L+1 decision thresholds x; < x» < ... < x;41 and

aset X ={&, k=1,...,L} reconstruction values or quantization
levels

such that X[n] = X if and only if xx < x[n] < xx;1, where x; = —o0
and x;41 = o

where the intervals Iy = [xk, xk+1) are called decision intervals or
quantization cells

The map Q: X - )? which is a staircase function by definition, is given

Q(x) = Rk for x € Iy, k=1,...,L
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Quantization

¢ uniform/non-uniform

* midtread/midrise

Output Output
level P
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quantization quantization
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Quantization

The uniform (linear) quantizer:
®axki1—xk=A
©a K= (ka1 —Xk)[2 = Rhe1 — R = A

A is called the step size of the quantizer
The quantization error z[n] = x[n] — X[ n] satisfies

A A
-—<z[n]<—=
2 2
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Analysis of quantization error

Example:

sampled signal (original (blue) and quantized (red)) quantization error

N
el Wil T

o 7o 15 20 o 5 10 15 20

The quantization function is nonlinear (staircase function). The
quantization error depends on the charateristics of the input function.
For these reasons, deterministic analysis of the quantization error is
intractable.
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Statistical analysis of quantization error

Mathematical model of quantization:

— Q

Assumptions:
* input signal x[n] is the realizatin of a zero-mean WSS process
* quantization noise is white (uncorrelated) and uniform

® quantization noise is uncorrelated to the input
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Statistical analysis of quantization error

pz(2)

Afl

>
wlp

Then, the quantization noise power (= variance) of a quantizer with
resolution (= step size) A is

A2
Pn = O'g = E
* Proof? (Variance of a random variable with given PDF )

* Effective performance (hence effective accuracy) is below the
theoretical value due to fabrication
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Signal to quantization noise ratio (SQNR)

Signal-to-quantization noise ratio (SQNR):
® Let’s denote the range of the quantizer with R
® Let's use B +1 bits to represent the quantized values

® Then
R

A=75a

® Therefore, the SQNR is:

SQNR = 101og;( EE ;) ~ 10logyg 12";2(’() _
O'(X)

=6,02B + 16,81 + 20 log; o —2

Every additional bit results in a 6dB increase in SQNR.
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Outline

® Quantization
¢ Coding
* Its effect on digital filters
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Coding

The coding process assigns a unique binary number to each
quantization level.
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Coding

® Fixed point
® Covers a fixed range of
numbers R
® Fixed resolution
® Dynamic range 1
Resolution |
® Floating point
® |t can cover a much
larger dynamic range
® Varying resolution
® consists of 2 parts:
mantissa and exponent

= S = T with m=2°,b= B+l
m_

X=M.2F
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Fixed-point representation

B ,
X = (b_A, ooy b_1,b0, bl,---bB)r = Z b,‘l’_l
i=—A

e r: radix or base; e.g. r =2 for binary
® A: number of integer digits, B: number of fractional digits
Often used:
* A=0 (sign bit) and B=n-1
* This representation allows to represent quantized (positive or
negative) values between 0 to 1 - 2B

7
TUDelft 15 / 38



Fixed-point signed binary format

There are various possible formats:
* signed-magnitude (SM)
* one's complement (1C)
* two's complement (2C)
Positive numbers are the same in all formats. Example:
* X=(0.101),=21+23=1/2+1/8=5/8

Negatige numbers:
® Xsm = (1.101), =—(271+273) =—(1/2+1/8) = -5/8

* Xic = (1.010), = -5/8
° Xoc = (1.011)2 = —5/8
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Fixed-point signed binary format

There are various possible formats:
* signed-magnitude (SM)
* one's complement (1C)
* two's complement (2C)
Positive numbers are the same in all formats. Example:
* X=(0.101),=21+23=1/2+1/8=5/8

Negatige numbers:
® Xsm = (1.101), =—(271+273) =—(1/2+1/8) = -5/8

* Xic =(1.010), =-5/8
* Xoc = (1.011), = -5/8 * Xoc = X1¢ +00...01

3
TUDelft .



Fixed-point signed binary format

There are various possible formats:
* signed-magnitude (SM) easy multiplication
* one's complement (1C) easy addition
* two's complement (2C) easy addition, larger range
Positive numbers are the same in all formats. Example:
* X=(0.101),=21+23=1/2+1/8=5/8

Negatige numbers:
® Xsm = (1.101), =—(271+273) =—(1/2+1/8) = -5/8

* Xic = (1.010), = -5/8
° Xoc = (1.011)2 = —5/8

5
TUDelft 16 / 38



Quantization effects in digital filters

* Quantization of filter coefficients (9.5)
* Round-off effects in filter arithmetics (9.6.1)
* Statistical analysis of quantization effects (9.6.3)
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Quantization effects in digital filters

* Quantization of filter coefficients (9.5)
* Round-off effects in filter arithmetics (9.6.1)
* Statistical analysis of quantization effects (9.6.3)

X.(1) x[n] gy yin] VAU
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electronics
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Quantization of filter coefficients

> bzt
V4
B(2) k=0 «
H(z) A2) ~
1- z akz‘k
k=0
After quantization:
§k=ak+Aak, Bk=bk+Abk (1)
As a result, the practically implemented transfer function changes as
follows:
M
5 > bz k
A B(z k=0
A(z) = AE ;= - (2)
2 1= Y sz k
k=0
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Quantization of filter coefficients

As a consequence, the position of the poles and zeros change as well:

Pk = Pk + Apk
2k =2z, + Azk

It can be shown that:

N V!
Ap=). N g Aa
=1 IT (pk - Pm)

k=1,m+k

Closely spaced poles give rise to large errors!
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Quantization of filter coefficients

Strategies to minimize the error Apy, i.e. |px — pil:

® Realize higher order filters with one or two-pole filter sections

® |t is recommended to use second order sections with
complex-conjugated poles

® Complex-conjugated poles are sufficiently far, i.e. perturbation
error will be under control
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Quantization of filter coefficients

Even in two-pole filter sections, the structure used to implement the
section plays an important role in the error caused by coefficient

quantization.
Consider the following filter, with poles at z = re

1
1-2rcosfz1 + r2z-2

+j60

H(z) =
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Quantization of filter coefficients
Realization 1:
* We need to quantize 2rcosf and r?
® Possible pole positions are non-uniformly distributed
* Hint to prove this: find the possible values of r given quantized r?
and 0, given fixed r and quantized 2r cos !

Im(z)
() (+) : yin) ‘l‘

2rcos

problems with low-pass filters Re(2)
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Quantization of filter coefficients

Realization 2:

* We need to quantize rcosf and rsin6.

® Possible pole positions lie on a uniform grid!

x(m) /’:\ /—\ vi(n) Im (Z)
U i

T

—rsind

reos §

Re(z)
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Quantization of filter coefficients

General strategy:

® choose a realization which yields uniform pole positions
¢ unfortunately there is no systematic design method
e for higher order structures, cascade is preferred over parallel form

¢ floating point arithmetic is preferred over fixed-point

Practice:

® Exercise 9.33

e
TUDelft 24/ 38



Quantization effects in digital filters

* Quantization of filter coefficients (9.5)
* Round-off effects in filter arithmetics (9.6.1)
* Statistical analysis of quantization effects (9.6.3)
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Round-off effects in filters arithmetics

® In recursive systems, non-linearities due to finite-precision
arithmetic operations cause periodic oscillations, called limit
cycles.

® Let’'s consider the followig single-pole system:

y(n) =ay(n-1)+x(n) (3)

® The actual system, however, quantizes the result of the
multiplication:

v(n) = Q[av(n-1)]+x(n) (4)
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Round-off effects in filters arithmetics

With a <1 the ideal system (1) decays towards zero exponentially (i.e.
y(n) =a" - 0 as n— o0). What about the actual system (2)?

¢ Let us assume 4-bit fixed-point arithmetic (plus sign bit)
® Let us also assume that the product is rounded upward

* Let us assume that x(n) = %(5(n)
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Round-off effects in filter arithmetics

The actual system'’s response v(n) reaches a steady-state periodic
output sequence, depending on the value a

TABLE 9.2 Limit Cycles for Lowpass Sin
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Round-off effects in filter arithmetics

® The amplitude of the output during a limit cycle is confined to a
certain range, called the dead band of the filter.

® For a single-pole filter the dead band is determined by:

2—b
1-1a|

N[

lva ()| <
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Round-off effects in filter arithmetics

Practice
® Exercise 9.31

® Exercise 9.35
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Outline

* Quantization of filter coefficients (9.5)
* Round-off effects in filter arithmetics (9.6.1)
* Statistical analysis of quantization effects (9.6.3)
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Statistical analysis of quantization effects

The quantization error in multipliers can be modeled as additive,
uniformly distributed white noise:

x(n) a 0 y(n) = ax(n) + z(n)

x(n) a . g}(?) =az(n) + z(n)

> >+
Z(H)T

Superposition principle:
® The output of the system is equal to its response to the input plus

its response to the quantization noise.
® In case of multiple noise sources, their effect is also additive.
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Statistical analysis of quantization effects

The effect of the quantization noise depends on the transfer function of
the noise source to the output of the filter.

Recap: filtering stochastic processes

Let g[n] denote the impulse reponse of an LTI system and g[n] denote
the response of this LTI system to a white stochastic input z[n]. Then,

o 5 2m
2 _ 2 2 _ 0z jwy |2
75=0% ¥ a(m?=32 0/ 6(e)Pdw (5)

Recall related lectures from SP track!
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http://cas.tudelft.nl/Education/courses/ee2s31/slides/SP7.pdf

Statistical analysis of quantization effects

Let us consider a single-pole IIR filter with impulse response h(n):
h(n) =a"u(n), |a| <1
Therefore

1
-a°

Z h(n)? = Z 2%"

Then, according to eq. (5), the noise power is enhanced relative to the
input noise, depending on a:
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Statistical analysis of quantization effects

Example:

2 z z

z
—PE-D T GE-D G-

H(z):(

=1

z1(n) z2(n)

Let us consider a second-order filter H(z), which is a cascade of two
first-order filter sections Hi(z) and H(z).
® Due to superposition, the total noise power at the output is the
sum of the output noise powers of z1(n) and z(n).

® The transfer function of z;(n) to the output is H(z), while the
transfer function of zx(n) is H2(z) (i.e. that of the second section)
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Statistical analysis of quantization effects

Example:
2 z z
H(z) = = .
e e DT DD
1 1
Lot Lot
z1(n) za(n)
The impulse responses are as follows:
* h(n) = (2$%)" = (3)"u(n)
® ha(n) = (3)"u(n)
The output quantization noise power is:
2
. crql = 12 Cy ) - (71‘)"2% 1.83% 2
c o2 = ey 1074 Total 2.90%>
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Statistical analysis of quantization effects

What if we interchange the 2 sections? Is the output quantization noise
power A: larger? B: smaller? C: equal?

H(z) = Hi(2)Ha(z) = Ha(2)H1(2)

an)

z1(n)
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Statistical analysis of quantization effects

Practice:
® Exercise 9.32
® Exercise 9.34

® Exercise 9.38
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