## Signal Processing EE2S31

# Digital Signal Processing <br> Lecture 6: Quantization and round-off effects 

Borbala Hunyadi

Delft University of Technology, The Netherlands

## Outline

- Quantization
- Coding
- Its effect on digital filters


## Outline

- Quantization
- Coding
- Its effect on digital filters



## A/D. converter



Basic task: convert a continuous range of input amplitudes to a discrete set of digital code words.

## A/D converters

- sampling
- quantization
- coding


## A/D converters

- sampling $\rightarrow$ lecture 1,2
- quantization
- coding


## A/D converters

- sampling $\rightarrow$ lecture 1,2
- quantization $\rightarrow$ a non-linear and non-invertible process that maps a given amplitude $x[n]=x_{a}\left(n T_{s}\right)$ at time $t=n T_{s}$ into an amplitude $\hat{x}_{k}$ taken from a finite set of values (quantization level or alphabet)
- coding


## A/D converters

- sampling $\rightarrow$ lecture 1,2
- quantization $\rightarrow$ a non-linear and non-invertible process that maps a given amplitude $x[n]=x_{a}\left(n T_{s}\right)$ at time $t=n T_{s}$ into an amplitude $\hat{x}_{k}$ taken from a finite set of values (quantization level or alphabet)
- coding $\rightarrow$ assigns a unique binary number (code) to each and every quantization level. This process is invertible (lossless).


## Quantization

An L-level quantizer is characterized by

- a set of $\mathrm{L}+1$ decision thresholds $x_{1}<x_{2}<\ldots<x_{L+1}$ and
- a set $\hat{X}=\left\{\hat{x}_{k}, k=1, \ldots, L\right\}$ reconstruction values or quantization levels
- such that $\hat{x}[n]=\hat{x}_{k}$ if and only if $x_{k} \leq x[n]<x_{k+1}$, where $x_{1}=-\infty$ and $x_{L+1}=\infty$
- where the intervals $I_{k}=\left[x_{k}, x_{k+1}\right)$ are called decision intervals or quantization cells
The map $Q: X \rightarrow \hat{X}$, which is a staircase function by definition, is given by:

$$
Q(x)=\hat{x}_{k} \text { for } x \in I_{k}, \mathrm{k}=1, \ldots, \mathrm{~L}
$$

## Quantization

- uniform/non-uniform
- midtread/midrise


Midtread type uniform quantization



Non-uniform quantization

## Quantization

The uniform (linear) quantizer:

- a $x_{k+1}-x_{k}=\Delta$
- a $\hat{x}_{k}=\left(x_{k+1}-x_{k}\right) / 2 \Rightarrow \hat{x}_{k+1}-\hat{x}_{k}=\Delta$
$\Delta$ is called the step size of the quantizer The quantization error $z[n]=x[n]-\hat{x}[n]$ satisfies

$$
-\frac{\Delta}{2} \leq z[n]<\frac{\Delta}{2}
$$

## Analysis of quantization error

## Example:



The quantization function is nonlinear (staircase function). The quantization error depends on the charateristics of the input function. For these reasons, deterministic analysis of the quantization error is intractable.

## Statistical analysis of quantization error

Mathematical model of quantization:


Assumptions:

- input signal $x[n]$ is the realizatin of a zero-mean WSS process
- quantization noise is white (uncorrelated) and uniform
- quantization noise is uncorrelated to the input


## Statistical analysis of quantization error



Then, the quantization noise power (= variance) of a quantizer with resolution (= step size) $\Delta$ is

$$
P_{n}=\sigma_{e}^{2}=\frac{\Delta^{2}}{12}
$$

- Proof? (Variance of a random variable with given PDF )
- Effective performance (hence effective accuracy) is below the theoretical value due to fabrication


## Signal to quantization noise ratio (SQNR)

Signal-to-quantization noise ratio (SQNR):

- Let's denote the range of the quantizer with $R$
- Let's use $B+1$ bits to represent the quantized values
- Then

$$
\Delta=\frac{R}{2^{B+1}}
$$

- Therefore, the SQNR is:

$$
\begin{aligned}
S Q N R & =10 \log _{10}\left(\frac{\sigma^{2}(x)}{\sigma^{2}(z)}\right)=10 \log _{10} \frac{12 \sigma^{2}(x)}{\Delta^{2}}= \\
& =6,02 B+16,81+20 \log _{10}\left(\frac{\sigma(x)}{R}\right)
\end{aligned}
$$

Every additional bit results in a 6 dB increase in SQNR.

## Outline

- Quantization
- Coding
- Its effect on digital filters


## Coding

The coding process assigns a unique binary number to each quantization level.

## Coding

- Fixed point
- Covers a fixed range of numbers
- Fixed resolution

$$
\Delta=\frac{R}{2^{B+1}}=\frac{x_{\max }-x_{\min }}{m-1}, \text { with } m=2^{b}, b=B+1
$$

- Dynamic range $\uparrow$ Resolution $\downarrow$
- Floating point
- It can cover a much larger dynamic range
- Varying resolution
- consists of 2 parts:

$$
X=M \cdot 2^{E}
$$

mantissa and exponent

## Fixed-point representation

$$
X=\left(b_{-A}, \ldots, b_{-1}, b_{0}, b_{1}, \ldots b_{B}\right)_{r}=\sum_{i=-A}^{B} b_{i} r^{-i}
$$

- r: radix or base; e.g. $r=2$ for binary
- A: number of integer digits, $B$ : number of fractional digits

Often used:

- $A=0$ (sign bit) and $B=n-1$
- This representation allows to represent quantized (positive or negative) values between 0 to $1-2^{-B}$


## Fixed-point signed binary format

There are various possible formats:

- signed-magnitude (SM)
- one's complement (1C)
- two's complement (2C)

Positive numbers are the same in all formats. Example:

- $X=(0.101)_{2}=2^{-1}+2^{-3}=1 / 2+1 / 8=5 / 8$

Negatige numbers:

- $X_{S M}=(1.101)_{2}=-\left(2^{-1}+2^{-3}\right)=-(1 / 2+1 / 8)=-5 / 8$
- $X_{1 C}=(1.010)_{2}=-5 / 8$
- $X_{2} C=(1.011)_{2}=-5 / 8$


## Fixed-point signed binary format

There are various possible formats:

- signed-magnitude (SM)
- one's complement (1C)
- two's complement (2C)

Positive numbers are the same in all formats. Example:

- $X=(0.101)_{2}=2^{-1}+2^{-3}=1 / 2+1 / 8=5 / 8$

Negatige numbers:

- $X_{S M}=(1.101)_{2}=-\left(2^{-1}+2^{-3}\right)=-(1 / 2+1 / 8)=-5 / 8$
- $X_{1 C}=(1.010)_{2}=-5 / 8$

$$
\downarrow \overline{b_{i}}=1-b_{i}
$$

- $X_{2 C}=(1.011)_{2}=-5 / 8$


## Fixed-point signed binary format

There are various possible formats:

- signed-magnitude (SM)
- one's complement (1C)
- two's complement (2C)

Positive numbers are the same in all formats. Example:

- $X=(0.101)_{2}=2^{-1}+2^{-3}=1 / 2+1 / 8=5 / 8$

Negatige numbers:

- $X_{S M}=(1.101)_{2}=-\left(2^{-1}+2^{-3}\right)=-(1 / 2+1 / 8)=-5 / 8$
- $X_{1 C}=(1.010)_{2}=-5 / 8$
- $X_{2 C}=(1.011)_{2}=-5 / 8 \downarrow X_{2 C}=X_{1 C}+00 \ldots 01$


## Fixed-point signed binary format

There are various possible formats:

- signed-magnitude (SM) easy multiplication
- one's complement (1C) easy addition
- two's complement (2C) easy addition, larger range

Positive numbers are the same in all formats. Example:

- $X=(0.101)_{2}=2^{-1}+2^{-3}=1 / 2+1 / 8=5 / 8$

Negatige numbers:

- $X_{S M}=(1.101)_{2}=-\left(2^{-1}+2^{-3}\right)=-(1 / 2+1 / 8)=-5 / 8$
- $X_{1 C}=(1.010)_{2}=-5 / 8$
- $X_{2} C=(1.011)_{2}=-5 / 8$


## Quantization effects in digital filters

- Quantization of filter coefficients (9.5)
- Round-off effects in filter arithmetics (9.6.1)
- Statistical analysis of quantization effects (9.6.3)


## Quantization effects in digital filters

- Quantization of filter coefficients (9.5)
- Round-off effects in filter arithmetics (9.6.1)
- Statistical analysis of quantization effects (9.6.3)



## Quantization of filter coefficients

$$
H(z)=\frac{B(z)}{A(z)}=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{1-\sum_{k=0}^{N} a_{k} z^{-k}}
$$

After quantization:

$$
\begin{equation*}
\hat{a}_{k}=a_{k}+\Delta a_{k}, \hat{b}_{k}=b_{k}+\Delta b_{k} \tag{1}
\end{equation*}
$$

As a result, the practically implemented transfer function changes as follows:

$$
\begin{equation*}
\hat{H}(z)=\frac{\hat{B}(z)}{\hat{A}(z)}=\frac{\sum_{k=0}^{M} \hat{b}_{k} z^{-k}}{1-\sum_{k=0}^{N} \hat{a}_{k} z^{-k}} \tag{2}
\end{equation*}
$$

## Quantization of filter coefficients

As a consequence, the position of the poles and zeros change as well:

$$
\begin{aligned}
& \hat{p}_{k}=p_{k}+\Delta p_{k} \\
& \hat{z}_{k}=z_{k}+\Delta z_{k}
\end{aligned}
$$

It can be shown that:

$$
\Delta p_{k}=\sum_{l=1}^{N} \frac{p_{k}^{N-l}}{\prod_{k=1, m \neq k}^{N}\left(p_{k}-p_{m}\right)} \Delta a_{l}
$$

Closely spaced poles give rise to large errors!

## Quantization of filter coefficients

Strategies to minimize the error $\Delta p_{k}$, i.e. $\left|p_{k}-p_{l}\right|$ :

- Realize higher order filters with one or two-pole filter sections
- It is recommended to use second order sections with complex-conjugated poles
- Complex-conjugated poles are sufficiently far, i.e. perturbation error will be under control


## Quantization of filter coefficients

Even in two-pole filter sections, the structure used to implement the section plays an important role in the error caused by coefficient quantization.
Consider the following filter, with poles at $z=r e^{ \pm j \theta}$

$$
H(z)=\frac{1}{1-2 r \cos \theta z^{-1}+r^{2} z^{-2}}
$$

## Quantization of filter coefficients

## Realization 1:

- We need to quantize $2 r \cos \theta$ and $r^{2}$
- Possible pole positions are non-uniformly distributed
- Hint to prove this: find the possible values of $r$ given quantized $r^{2}$ and $\theta$, given fixed $r$ and quantized $2 r \cos \theta$ !



## Quantization of filter coefficients

Realization 2:

- We need to quantize $r \cos \theta$ and $r \sin \theta$.
- Possible pole positions lie on a uniform grid!




## Quantization of filter coefficients

General strategy:

- choose a realization which yields uniform pole positions
- unfortunately there is no systematic design method
- for higher order structures, cascade is preferred over parallel form
- floating point arithmetic is preferred over fixed-point

Practice:

- Exercise 9.33


## Quantization effects in digital filters

- Quantization of filter coefficients (9.5)
- Round-off effects in filter arithmetics (9.6.1)
- Statistical analysis of quantization effects (9.6.3)


## Round-off effects in filters arithmetics

- In recursive systems, non-linearities due to finite-precision arithmetic operations cause periodic oscillations, called limit cycles.
- Let's consider the followig single-pole system:

$$
\begin{equation*}
y(n)=a y(n-1)+x(n) \tag{3}
\end{equation*}
$$

- The actual system, however, quantizes the result of the multiplication:

$$
\begin{equation*}
v(n)=Q[\operatorname{av}(n-1)]+x(n) \tag{4}
\end{equation*}
$$

## Round-off effects in filters arithmetics

With $a<1$ the ideal system (1) decays towards zero exponentially (i.e. $y(n)=a^{n} \rightarrow 0$ as $\left.n \rightarrow \infty\right)$. What about the actual system (2)?

- Let us assume 4-bit fixed-point arithmetic (plus sign bit)
- Let us also assume that the product is rounded upward
- Let us assume that $x(n)=\frac{15}{16} \delta(n)$


## Round-off effects in filter arithmetics

The actual system's response $v(n)$ reaches a steady-state periodic output sequence, depending on the value $a$

TABLE 9.2 Limit Cycles for Lowpass Single-Pole Filter

| $n$ | $a=0.1000=\frac{1}{2}$ |  | $a=1.1000=-\frac{1}{2}$ | $a=0.1100=\frac{3}{4}$ |  | $a=1.1100=-\frac{3}{4}$ |  |  |
| ---: | :---: | :---: | :---: | ---: | :---: | :---: | :---: | ---: |
| 0 | 0.1111 | $\left(\frac{15}{16}\right)$ | 0.1111 | $\left(\frac{15}{16}\right)$ | 0.1011 | $\left(\frac{11}{16}\right)$ | 0.1011 | $\left(\frac{11}{16}\right)$ |
| 1 | 0.1000 | $\left(\frac{8}{16}\right)$ | 1.1000 | $\left(-\frac{8}{16}\right)$ | 0.1000 | $\left(\frac{8}{16}\right)$ | 1.1000 | $\left(-\frac{8}{16}\right)$ |
| 2 | 0.0100 | $\left(\frac{4}{16}\right)$ | 0.0100 | $\left(\frac{4}{16}\right)$ | 0.0110 | $\left(\frac{6}{16}\right)$ | 0.0110 | $\left(\frac{6}{16}\right)$ |
| 3 | 0.0010 | $\left(\frac{2}{16}\right)$ | 1.0010 | $\left(-\frac{2}{16}\right)$ | 0.0101 | $\left(\frac{5}{16}\right)$ | 1.0101 | $\left(-\frac{5}{16}\right)$ |
| 4 | 0.0001 | $\left(\frac{1}{16}\right)$ | 0.0001 | $\left(\frac{1}{16}\right)$ | 0.0100 | $\left(\frac{4}{16}\right)$ | 0.0100 | $\left(\frac{4}{16}\right)$ |
| 5 | 0.0001 | $\left(\frac{1}{16}\right)$ | 1.0001 | $\left(-\frac{1}{16}\right)$ | 0.0011 | $\left(\frac{3}{16}\right)$ | 1.0011 | $\left(-\frac{3}{16}\right)$ |
| 6 | 0.0001 | $\left(\frac{1}{16}\right)$ | 0.0001 | $\left(\frac{1}{16}\right)$ | 0.0010 | $\left(\frac{2}{16}\right)$ | 0.0010 | $\left(\frac{2}{16}\right)$ |
| 7 | 0.0001 | $\left(\frac{1}{16}\right)$ | 1.0001 | $\left(-\frac{1}{16}\right)$ | 0.0010 | $\left(\frac{2}{16}\right)$ | 1.0010 | $\left(-\frac{2}{16}\right)$ |
| 8 | 0.0001 | $\left(\frac{1}{16}\right)$ | 0.0001 | $\left(\frac{1}{16}\right)$ | 0.0010 | $\left(\frac{2}{16}\right)$ | 0.0010 | $\left(\frac{2}{16}\right)$ |

## Round-off effects in filter arithmetics

- The amplitude of the output during a limit cycle is confined to a certain range, called the dead band of the filter.
- For a single-pole filter the dead band is determined by:

$$
\left|v_{d}(n)\right| \leq \frac{\frac{1}{2} 2^{-b}}{1-|a|}
$$

## Round-off effects in filter arithmetics

## Practice

- Exercise 9.31
- Exercise 9.35


## Outline

- Quantization of filter coefficients (9.5)
- Round-off effects in filter arithmetics (9.6.1)
- Statistical analysis of quantization effects (9.6.3)


## Statistical analysis of quantization effects

The quantization error in multipliers can be modeled as additive, uniformly distributed white noise:


Superposition principle:

- The output of the system is equal to its response to the input plus its response to the quantization noise.
- In case of multiple noise sources, their effect is also additive.


## Statistical analysis of quantization effects

The effect of the quantization noise depends on the transfer function of the noise source to the output of the filter.

Recap: filtering stochastic processes
Let $g[n]$ denote the impulse reponse of an LTI system and $q[n]$ denote the response of this LTI system to a white stochastic input $z[n]$. Then,

$$
\begin{equation*}
\sigma_{q}^{2}=\sigma_{z}^{2} \sum_{n=-\infty}^{\infty} g(n)^{2}=\frac{\sigma_{z}^{2}}{2 \pi} \int_{0}^{2 \pi}\left|G\left(e^{j \omega}\right)\right|^{2} d \omega \tag{5}
\end{equation*}
$$

Recall related lectures from SP track!

## Statistical analysis of quantization effects

Let us consider a single-pole IIR filter with impulse response $h(n)$ :

$$
h(n)=a^{n} u(n),|a|<1
$$

Therefore

$$
\sum_{n=-\infty}^{\infty} h(n)^{2}=\sum_{n=-\infty}^{\infty} a^{2 n}=\frac{1}{1-a^{2}}
$$

Then, according to eq. (5), the noise power is enhanced relative to the input noise, depending on a:

$$
\sigma_{q}^{2}=\sigma_{z}^{2} \frac{1}{1-a^{2}}
$$

## Statistical analysis of quantization effects

Example:

$$
H(z)=\frac{z^{2}}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{4}\right)}=\frac{z}{\left(z-\frac{1}{2}\right)} \cdot \frac{z}{\left(z-\frac{1}{4}\right)}
$$



Let us consider a second-order filter $H(z)$, which is a cascade of two first-order filter sections $H_{1}(z)$ and $H_{2}(z)$.

- Due to superposition, the total noise power at the output is the sum of the output noise powers of $z_{1}(n)$ and $z_{2}(n)$.
- The transfer function of $z_{1}(n)$ to the output is $H(z)$, while the transfer function of $z_{2}(n)$ is $H_{2}(z)$ (i.e. that of the second section)


## Statistical analysis of quantization effects

Example:

$$
H(z)=\frac{z^{2}}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{4}\right)}=\frac{z}{\left(z-\frac{1}{2}\right)} \cdot \frac{z}{\left(z-\frac{1}{4}\right)}
$$



The impulse responses are as follows:

- $h(n)=\left(2\left(\frac{1}{2}\right)^{n}-\left(\frac{1}{4}\right)^{n}\right) u(n)$
- $h_{2}(n)=\left(\frac{1}{4}\right)^{n} u(n)$

The output quantization noise power is:

- $\sigma_{q_{1}}^{2}=\frac{\Delta^{2}}{12} \sum\left(2\left(\frac{1}{2}\right)^{n}-\left(\frac{1}{4}\right)^{n}\right)^{2} \approx 1.83 \frac{\Delta^{2}}{12}$
- $\sigma_{q_{2}}^{2}=\frac{\Delta^{2}}{12} \sum\left(\frac{1}{4}\right)^{2 n} \approx 1.07 \frac{\Delta^{2}}{12}$

$$
\text { Total } 2.90 \frac{\Delta^{2}}{12}
$$

## Statistical analysis of quantization effects

What if we interchange the 2 sections? Is the output quantization noise power A: larger? B: smaller? C: equal?

$$
H(z)=H_{1}(z) H_{2}(z)=H_{2}(z) H_{1}(z)
$$



## Statistical analysis of quantization effects

## Practice:

- Exercise 9.32
- Exercise 9.34
- Exercise 9.38

