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A/D converter

Basic task: convert a continuous range of input amplitudes to a discrete
set of digital code words.
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A/D converters

● sampling

→ lecture 1, 2

● quantization

→ a non-linear and non-invertible process that maps a
given amplitude x[n] = xa(nTs) at time t = nTs into an amplitude
x̂k taken from a finite set of values (quantization level or alphabet)

● coding

→ assigns a unique binary number (code) to each and every
quantization level. This process is invertible (lossless).

4 / 38



A/D converters

● sampling → lecture 1, 2

● quantization

→ a non-linear and non-invertible process that maps a
given amplitude x[n] = xa(nTs) at time t = nTs into an amplitude
x̂k taken from a finite set of values (quantization level or alphabet)

● coding

→ assigns a unique binary number (code) to each and every
quantization level. This process is invertible (lossless).

4 / 38



A/D converters

● sampling → lecture 1, 2

● quantization → a non-linear and non-invertible process that maps a
given amplitude x[n] = xa(nTs) at time t = nTs into an amplitude
x̂k taken from a finite set of values (quantization level or alphabet)

● coding

→ assigns a unique binary number (code) to each and every
quantization level. This process is invertible (lossless).

4 / 38



A/D converters

● sampling → lecture 1, 2

● quantization → a non-linear and non-invertible process that maps a
given amplitude x[n] = xa(nTs) at time t = nTs into an amplitude
x̂k taken from a finite set of values (quantization level or alphabet)

● coding → assigns a unique binary number (code) to each and every
quantization level. This process is invertible (lossless).

4 / 38



Quantization

An L-level quantizer is characterized by

● a set of L+1 decision thresholds x1 < x2 < ... < xL+1 and

● a set X̂ = {x̂k , k = 1, ...,L} reconstruction values or quantization
levels

● such that x̂[n] = x̂k if and only if xk ≤ x[n] < xk+1, where x1 = −∞
and xL+1 =∞

● where the intervals Ik = [xk , xk+1) are called decision intervals or
quantization cells

The map Q ∶ X → X̂ , which is a staircase function by definition, is given
by:

Q(x) = x̂k for x ∈ Ik , k=1,...,L
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Quantization

● uniform/non-uniform

● midtread/midrise
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Quantization

The uniform (linear) quantizer:

● a xk+1 − xk = ∆

● a x̂k = (xk+1 − xk)/2⇒ x̂k+1 − x̂k = ∆

∆ is called the step size of the quantizer
The quantization error z[n] = x[n] − x̂[n] satisfies

−∆

2
≤ z[n] < ∆

2
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Analysis of quantization error

The quantization function is nonlinear (staircase function). The
quantization error depends on the charateristics of the input function.
For these reasons, deterministic analysis of the quantization error is
intractable.
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Statistical analysis of quantization error

Mathematical model of quantization:

Assumptions:

● input signal x[n] is the realizatin of a zero-mean WSS process

● quantization noise is white (uncorrelated) and uniform

● quantization noise is uncorrelated to the input
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Statistical analysis of quantization error

Then, the quantization noise power (= variance) of a quantizer with
resolution (= step size) ∆ is

Pn = σ2
e =

∆2

12

● Proof? (Variance of a random variable with given PDF )

● Effective performance (hence effective accuracy) is below the
theoretical value due to fabrication
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Signal to quantization noise ratio (SQNR)

Signal-to-quantization noise ratio (SQNR):

● Let’s denote the range of the quantizer with R

● Let’s use B + 1 bits to represent the quantized values

● Then

∆ = R

2B+1

● Therefore, the SQNR is:

SQNR = 10 log10(
σ2(x)
σ2(z)) = 10 log10

12σ2(x)
∆2

=

= 6,02B + 16,81 + 20 log10(
σ(x)
R

)

Every additional bit results in a 6dB increase in SQNR.
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Coding

The coding process assigns a unique binary number to each
quantization level.

13 / 38



Coding

● Fixed point
● Covers a fixed range of

numbers
● Fixed resolution
● Dynamic range ↑

Resolution ↓
● Floating point

● It can cover a much
larger dynamic range

● Varying resolution
● consists of 2 parts:

mantissa and exponent

∆ = R

2B+1
= xmax − xmin

m − 1
, with m = 2b,b = B+1

X =M ⋅ 2E
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Fixed-point representation

X = (b−A, ...,b−1,b0,b1, ...bB)r =
B

∑
i=−A

bi r
−i

● r: radix or base; e.g. r = 2 for binary

● A: number of integer digits, B: number of fractional digits

Often used:

● A = 0 (sign bit) and B = n − 1

● This representation allows to represent quantized (positive or
negative) values between 0 to 1 − 2−B
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Fixed-point signed binary format

There are various possible formats:

● signed-magnitude (SM)

easy multiplication

● one’s complement (1C)

easy addition

● two’s complement (2C)

easy addition, larger range

Positive numbers are the same in all formats. Example:

● X = (0.101)2 = 2−1 + 2−3 = 1/2 + 1/8 = 5/8

Negatige numbers:
● XSM = (1.101)2 = −(2−1 + 2−3) = −(1/2+ 1/8) = −5/8

● X1C = (1.010)2 = −5/8

● X2C = (1.011)2 = −5/8

↓ bi = 1 − bi
↓ X2C = X1C + 00...01
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Quantization effects in digital filters

● Quantization of filter coefficients (9.5)

● Round-off effects in filter arithmetics (9.6.1)

● Statistical analysis of quantization effects (9.6.3)
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Quantization of filter coefficients

H(z) = B(z)
A(z) =

M

∑
k=0

bkz
−k

1 −
N

∑
k=0

akz−k

After quantization:

âk = ak +∆ak , b̂k = bk +∆bk (1)

As a result, the practically implemented transfer function changes as
follows:

Ĥ(z) = B̂(z)
Â(z)

=

M

∑
k=0

b̂kz
−k

1 −
N

∑
k=0

âkz−k
(2)
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Quantization of filter coefficients

As a consequence, the position of the poles and zeros change as well:

p̂k = pk +∆pk

ẑk = zk +∆zk

It can be shown that:

∆pk =
N

∑
l=1

pN−lk
N

∏
k=1,m≠k

(pk − pm)
∆al

Closely spaced poles give rise to large errors!
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Quantization of filter coefficients

Strategies to minimize the error ∆pk , i.e. ∣pk − pl ∣:
● Realize higher order filters with one or two-pole filter sections

● It is recommended to use second order sections with
complex-conjugated poles

● Complex-conjugated poles are sufficiently far, i.e. perturbation
error will be under control
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Quantization of filter coefficients

Even in two-pole filter sections, the structure used to implement the
section plays an important role in the error caused by coefficient
quantization.
Consider the following filter, with poles at z = re±jθ

H(z) = 1

1 − 2rcosθz−1 + r2z−2
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Quantization of filter coefficients
Realization 1:

● We need to quantize 2r cos θ and r2

● Possible pole positions are non-uniformly distributed
● Hint to prove this: find the possible values of r given quantized r2

and θ, given fixed r and quantized 2r cos θ!
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Quantization of filter coefficients

Realization 2:

● We need to quantize r cos θ and r sin θ.

● Possible pole positions lie on a uniform grid!
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Quantization of filter coefficients

General strategy:

● choose a realization which yields uniform pole positions

● unfortunately there is no systematic design method

● for higher order structures, cascade is preferred over parallel form

● floating point arithmetic is preferred over fixed-point

Practice:

● Exercise 9.33
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Quantization effects in digital filters
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Round-off effects in filters arithmetics

● In recursive systems, non-linearities due to finite-precision
arithmetic operations cause periodic oscillations, called limit
cycles.

● Let’s consider the followig single-pole system:

y(n) = ay(n − 1) + x(n) (3)

● The actual system, however, quantizes the result of the
multiplication:

v(n) = Q[av(n − 1)] + x(n) (4)
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Round-off effects in filters arithmetics

With a < 1 the ideal system (1) decays towards zero exponentially (i.e.
y(n) = an → 0 as n →∞). What about the actual system (2)?

● Let us assume 4-bit fixed-point arithmetic (plus sign bit)

● Let us also assume that the product is rounded upward

● Let us assume that x(n) = 15
16δ(n)
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Round-off effects in filter arithmetics

The actual system’s response v(n) reaches a steady-state periodic
output sequence, depending on the value a
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Round-off effects in filter arithmetics

● The amplitude of the output during a limit cycle is confined to a
certain range, called the dead band of the filter.

● For a single-pole filter the dead band is determined by:

∣vd(n)∣ ≤
1
2 2−b

1 − ∣a∣
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Round-off effects in filter arithmetics

Practice

● Exercise 9.31

● Exercise 9.35
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Outline

● Quantization of filter coefficients (9.5)

● Round-off effects in filter arithmetics (9.6.1)

● Statistical analysis of quantization effects (9.6.3)
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Statistical analysis of quantization effects
The quantization error in multipliers can be modeled as additive,
uniformly distributed white noise:

Superposition principle:
● The output of the system is equal to its response to the input plus

its response to the quantization noise.
● In case of multiple noise sources, their effect is also additive.
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Statistical analysis of quantization effects

The effect of the quantization noise depends on the transfer function of
the noise source to the output of the filter.

Recap: filtering stochastic processes

Let g[n] denote the impulse reponse of an LTI system and q[n] denote
the response of this LTI system to a white stochastic input z[n]. Then,

σ2
q = σ2

z

∞

∑
n=−∞

g(n)2 = σ
2
z

2π

2π

∫
0

∣G(e jω)∣2dω (5)

Recall related lectures from SP track!
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Statistical analysis of quantization effects

Let us consider a single-pole IIR filter with impulse response h(n):

h(n) = anu(n), ∣a∣ < 1

Therefore

∞

∑
n=−∞

h(n)2 =
∞

∑
n=−∞

a2n = 1

1 − a2

Then, according to eq. (5), the noise power is enhanced relative to the
input noise, depending on a:

σ2
q = σ2

z
1

1 − a2
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Statistical analysis of quantization effects

Let us consider a second-order filter H(z), which is a cascade of two
first-order filter sections H1(z) and H2(z).

● Due to superposition, the total noise power at the output is the
sum of the output noise powers of z1(n) and z2(n).

● The transfer function of z1(n) to the output is H(z), while the
transfer function of z2(n) is H2(z) (i.e. that of the second section)
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Statistical analysis of quantization effects

The impulse responses are as follows:

● h(n) = (2(1
2)

n − (1
4)

n)u(n)
● h2(n) = (1

4)
nu(n)

The output quantization noise power is:

● σ2
q1
= ∆2

12 ∑(2(1
2)

n − (1
4)

n)2 ≈ 1.83 ∆2

12

● σ2
q2
= ∆2

12 ∑(1
4)

2n ≈ 1.07 ∆2

12 Total 2.90 ∆2

12
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Statistical analysis of quantization effects

What if we interchange the 2 sections? Is the output quantization noise
power A: larger? B: smaller? C: equal?
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Statistical analysis of quantization effects

Practice:

● Exercise 9.32

● Exercise 9.34

● Exercise 9.38
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