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Part 1: Filtering using DFT
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Recap: DSP

Digital Signal Processing

Processing of analog signals by means of discrete-time operations
implemented on digital hardware

sampling
quantization

filtering
spectral analysis

reconstruction

Prerequisite: digital representation of the spectrum of X(f)!
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Recap: Discrete Fourier Transform
We have shown that, given a discrete time signal x[n], it is possible to
reconstruct its spectrum X (ω) from its N equidistant samples in case
x[n] is of finite length with n = 0,1, ...,L − 1 and N ≥ L.

Definition

The Discrete Fourier Transform (DFT) of a sequence x[n] is

X [k] =
N−1

∑
n=0

x[n]e−j2π
kn
N , for 0 ≤ k ≤ N − 1
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Recap: Inverse Discrete Fourier Transform

We have also shown that the discrete time signal x[n] can be
reconstructed from N equidistant samples of its spectrum X (ω) in case
x[n] has finite length with n = 0,1, ...,L − 1 and N ≥ L

Definition

The DFT values (i.e. X [k], 0 ≤ k ≤ N − 1) uniquely define the discrete
time signal x[n], n = 0,1, ...L − 1, L ≤ N through the Inverse Discrete
Fourier Transform (IDFT):

x[n] = 1

N

N−1

∑
k=0

X [k]e j2π
kn
N , for 0 ≤ n ≤ N − 1
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Recap: DFT - Example 4

Channel estimation (EE2T11):

Deconvolution in the frequency
domain:

1 Compute X (k) and Y (k), the
DFTs of x and y (microphone
close and far from the
loudspeaker, resp.)

2 Compute H(k) = Y (k)
X(k)

3 Compute h(k) from H(k)
using the IDFT
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Recap: DFT - Example 4

Channel estimation result:

As expected, the impulse response tends to zero after the initial peak.
However, an increase in values is observed in the end of the response. These
values belong to the negative time of the impulse response. They appear in
the end due to the circular convolution proptery of DFT.
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DFT and circular convolution

Given two finite-length sequences x1[n] and x2[n] and their DFTs
X1[k] and X2[k]. If a certain DFT X3[k] = X1[k] ⋅X2[k], then the
corresponding finite length sequence x3[n] can be written as the circular
convolution of the two sequences:

x3[m] =
N−1

∑
n=0

x1[n]x2[m − n]N , where

[]N denotes the modulo operation.

Goal of the lecture

During this lecture we will see how to implement linear convolution
using circular convolution, such that filtering (i.e. linear convolution in
time domain) can be implemented using DFT in the frequency domain
on a digital computer.
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Outline

● Circular convolution

● Filtering using DFT: linear convolution via circular convolution

● Filtering long sequences
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Circular convolution and the modulo operation

Meaning of the modulo operation []N : Given [k − l]N , if m = k − l is
outside the range [0...N-1], then the modulo operation takes an integer
p such that k − l + pN is within the range [0...N-1]. Then
[k − l]N = k − l + pN.

Example: [2 − 3]5 = 4

Graphical example:

10 / 37



Circular convolution and the modulo operation
Meaning of the modulo operation []N : Given [k − l]N , if m = k − l is
outside the range [0...N-1], then the modulo operation takes an integer
p such that k − l + pN is within the range [0...N-1]. Then
[k − l]N = k − l + pN.

Example: [2 − 3]5 = 4

Graphical example:

10 / 37



Circular convolution and the modulo operation
Meaning of the modulo operation []N : Given [k − l]N , if m = k − l is
outside the range [0...N-1], then the modulo operation takes an integer
p such that k − l + pN is within the range [0...N-1]. Then
[k − l]N = k − l + pN.

Example: [2 − 3]5 = 4

Graphical example:

10 / 37



Circular convolution and the modulo operation
Meaning of the modulo operation []N : Given [k − l]N , if m = k − l is
outside the range [0...N-1], then the modulo operation takes an integer
p such that k − l + pN is within the range [0...N-1]. Then
[k − l]N = k − l + pN.

Example: [2 − 3]5 = 4

Graphical example:

10 / 37



Linear vs circular convolution

Example: x1 = x2 = [1 1 1]. What is x3?

Linear convolution:

x3[m] =
N−1

∑
n=0

x1[n]x2[m − n],

m = 0,1, ...L +M − 1

Circular convolution:

x3[m] =
N−1

∑
n=0

x1[n]x2[m − n]N ,

m = 0,1, ...N − 1
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Filtering using DFT

Let x[n], n = 0,1, ...,L − 1 be the finite-length input of a system with
finite impulse response h[n], n = 0,1, ...M − 1. Then, the output of the
system is a length L +M − 1 sequence that can be expressed as the
linear convolution of the sequences:

y[n] =
M−1

∑
k=0

h[k]x[n − k]

Or as a multiplication of their (continuous!) spectra:

Y (ω) = X (ω)H(ω)

As y[n] is of length L +M − 1, we need to represent Y (ω) with at least
L +M − 1 samples in the frequency domain, i.e. with an N-point DFT
where N ≥ L +M − 1.

We cannot achieve this directly using the M-point
DFT of x[n] and L-point DFT of h[n]!
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Filtering using DFT
Let’s sample the continuous spectra at N equidistant samples:

Y (2πk

N
) = H(2πk

N
)X (2πk

N
)

We have seen that the N-point DFT of a length L < N sequence can be
obtained by zero-padding the sequence. Thus, let

xN[n] =
⎧⎪⎪⎨⎪⎪⎩

x[n], n ≤ L − 1

0, L < n ≤ N − 1

hN[n] =
⎧⎪⎪⎨⎪⎪⎩

h[n], n ≤M − 1

0, M < n ≤ N − 1

Then, taking their N-point DFTs XN[k] and HN[k], we can obtain
Y [k] = H0[k]X0[k].
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Linear convolution through circular convolution
The above result also implies that linear convolution of finite-length
sequences is equivalent to the N-point circular convolution of their
zero-padded (till length N) versions. Let x1 = x2 = [1 1 1 0 0], and

x3[m] =
N−1

∑
n=0

x1[n]x2[m − n]N .

x1[n] x2[0 − n] x1[n] x2[0 − n]5 x3[0]
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Linear convolution through circular convolution

The above result also implies that linear convolution of finite-length
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Filtering using DFT: Example

How to filter a length Nx EEG segment (left) with a low-pass filter with
an impulse reponse (right) of length Ny?

Procedure:

1 Zero-pad both sequences
to N = Nx +Ny − 1

2 Compute their N-point
DFTs

3 Multiply their DFTs

4 Compute the inverse DFT
to obtain the filtered EEG
segment
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Filtering long sequences

Practical problems:

● filtering long blocks is computationally intensive

● requires large memory

● results are required in real-time

Various applications, e.g.:

● EEG monitoring lasting several days

● audio processing for hearing aids

Solution:

1 segment the sequence to short fixed-size blocks

2 process the blocks separately

3 fit the processed blocks together
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Filtering long sequences: overlap-save
In the previous example, the EEG segment came from a long recording.
Instead of zero-padding, we can use the upcoming data samples.
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Filtering long sequences: overlap-save

In order to avoid aliasing,

● we discard the first M-1
samples of the output block,
where M is the length of the
impulse reponse of the filter.

● these points become the first
M-1 samples of the next
output block

● in the very first output block
the first M-1 samples are
replaced by zeros.

18 / 37



Part 2: Spectral Analysis using DFT
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Recap: DFT - Example 1

x[n] = sin(θn) , 0 ≤ n ≤ N − 1 , N = 60

Case 1:
θ is an integer multiple of 2π/N
e.g. θ = 2π ⋅ 5/N

Case 2:
θ is not an integer multiple of 2π/N
e.g. θ = 2π ⋅ 5.5/N
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Recap: Example 1 - Explanation

Why in case 1 we have 2 non-zero DFT coefficients, while in case 2 all
coefficients are non-zero?

● explanation 1: considering DFT as a projection on a linear basis.

● explanation 2: considering that the DFT is related to the Fourier
coefficients of the periodic extension of the sequence.

During this lecture we will see one more alternative explanation for this
phenomenon.
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Spectral analysis: general considerations
To compute the spectrum of a signal x[n], we need all the samples over
an infinite interval.

X (ω) ≡
∞
∑

n=−∞
x[n]e−jωn

However, in practice, we only have a finite number of samples available,
i.e x̂[n], with n = 0,1, ...,L − 1.

x̂[n] can be viewed as a windowed version of x[n]:

x̂[n] = x[n]w[n]
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Spectral analysis: general considerations

Due to the windowing, the spectrum of the finite sequence is expressed
as a convolution of the spectrum of the original sequence and the
Fourier transform of the window sequence:

X̂ (ω) =
π

∫
−π

X (θ)W (ω − θ)dθ

W (ω) =
L−1

∑
n=0

e−jωn = 1 − e−jωL

1 − e−jω

= sin(ωL/2)
sin(ω/2) e−jω(L−1)/2
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Example 1 - Alternative explanation

x[n] = sin(θn) , 0 ≤ n ≤ N − 1 , N = 60

Case 1:
θ is an integer multiple of 2π/N
e.g. θ = 2π ⋅ 5/N

Case 2:
θ is not an integer multiple of 2π/N
e.g. θ = 2π ⋅ 5.5/N
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Zero-padding

Case 2:

Zero-padding gives us more samples of the underlying continuous
spectrum, i.e. improves apparent resolution.
However, we will see that it does not improve the actual spectral
resolution, i.e. our ability to distingusih closely spaced frequencies.
As the window function is not localized in frequency, the windowed
spectrum is spread out (leaked out) over the whole frequency range -
”spectral leakage”
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Rectangular window

W (ω) = sin(ωL/2)
sin(ω/2) e−jω(L−1)/2

● Main lobe has a width of
∆ω = 4π

L

● Sidelobes have an amplitude of
-13dB.

N=16
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Effect of windowing

● Spectral smoothing: Due to the non-zero width of the main lobe,
two closely spaced peaks in the Fourier spectum may appear as a
single peak in the DFT of the finite sequence.

● Spectral leakage: The spectrum is spread out to the whole
frequency range. Besides, a weak peak in the original spectrum
may be masked by the ”leakage” from a large peak.
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Effect of windowing - Example 1
x[n] = 1/3(cos(ω1n) + cos(ω2n)) , ω1 = 0.2π, ω2 = 0.22π with
n = 0,1, ...L − 1, and L = 25
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Effect of windowing - Example 1
x[n] = 1/3(cos(ω1n) + cos(ω2n)) , ω1 = 0.2π, ω2 = 0.22π with
n = 0,1, ...L − 1, and L = 50
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Effect of windowing - Example 1
x[n] = 1/3(cos(ω1n) + cos(ω2n)) , ω1 = 0.2π, ω2 = 0.22π with
n = 0,1, ...L − 1, and L =100
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Observations from example 1

The more samples I take1, the better the spectral resolution.

1Here, consider a fixed sampling rate that matches the bandwidth of the signal. That is, more samples mean a longer
observation window.
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Effect of windowing - Example 2
x[n] = 1/3(cos(ω1n) + cos(ω2n)) , ω1 = 0.2π, with n = 0,1, ...L − 1,
L = 100 and ω2 = 0.24π
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Effect of windowing - Example 2
x[n] = 1/3(cos(ω1n) + cos(ω2n)) , ω1 = 0.2π, with n = 0,1, ...L − 1,
L = 100 and ω2 = 0.21π

30 / 37



Observations from example 2

The width of the main lobe limits the spectral resolution, i.e. our ability
to distinguish closely spaced spectral lines.
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Spectral resolution and the rectangular window

The spectral resolution depends on the width of the main lobe of the
window function:

● The spectrum W (ω) has its first zero-crossing at ω = 2π/L
● Therefore, two spectral lines ω1 and ω2 are not distinguishable if

∣ω1 − ω2∣ < 2π/L.

● If ∣ω1 − ω2∣ ≥ 2π/L we will see two separate lobes in the frequency
spectrum.
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Effect of windowing - Example 3
x[n] = 1/3(cos(ω1n) + γcos(ω2n)) , ω1 = 0.2π, ω2 = 0.28π with
n = 0,1, ...L − 1, L = 100 and γ = 1
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Effect of windowing - Example 3
x[n] = 1/3(cos(ω1n) + γcos(ω2n)) , ω1 = 0.2π, ω2 = 0.28π with
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Observations from example 3

The sidelobe of the window function can mask a weak spectral line.
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Choice of the window function

In general, there is a trade-off between the width of the main lobe and
the amplitude of the sidelobes:
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Choice of window - Example 1
x[n] = 1/3(cos(ω1n) + γcos(ω2n)) , ω1 = 0.2π, ω2 = 0.28π with
n = 0,1, ...L − 1, L = 100, γ = 0.1 and using a rectangular window

36 / 37



Choice of window - Example 1
x[n] = 1/3(cos(ω1n) + γcos(ω2n)) , ω1 = 0.2π, ω2 = 0.28π with
n = 0,1, ...L − 1, L = 100, γ = 0.1 and using a Hanning window
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Summary
We considered the spectral analysis of an (infinite) sequence in practice,
approximated from a finite data record.

● In time domain the finite sequence is equivalent to multiplying the infinite
sequence with a window funcion

● In the frequency domain the spectrum (DTFT) of the finite sequence is
equivalent to the convolution of the DTFT of the infinite sequence with
the DTFT of the window sequence.

● The spectral resolution will depend on the width of the main lobe of the
window, which, in turn, depends on the chosen window function and the
number of samples L we take.

● There is a trade-off between resolution and spectral leakage, i.e. the
width of the main lobe and the amplitude of the sidelobes.

● Taking an N-point DFT with N > L (i.e. zero-padding) will not increase
the spectral resolution (i.e. the information contained in the DTFT) but
it will give us more samples of it (i.e. may increase apparent resolution)
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