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Recap: DSP

Digital Signal Processing

Processing of analog signals by means of discrete-time operations
implemented on digital hardware

sampling
quantization

filtering
spectral analysis

reconstruction
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Recap: (Non-ideal) sampling and reconstruction
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Recap: (Non-ideal) sampling and reconstruction

Spectrum X (f ) is a continuous function of frequency!
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Frequency domain sampling

● X (f ), computed via the discrete time fourier transform (DTFT), is
the spectrum of the sampled signal x[n]

● X (f ) is a continuous function of frequency

● X (f ) is not a convenient representation of x[n] for a digital system

Goal of this lecture

We will consider the representation of x[n] using the samples of its
spectrum X(f). This will lead to the definition of the discrete Fourier
Transform (DFT).

4 / 30



Frequency domain sampling

● X (f ), computed via the discrete time fourier transform (DTFT), is
the spectrum of the sampled signal x[n]

● X (f ) is a continuous function of frequency

● X (f ) is not a convenient representation of x[n] for a digital system

Goal of this lecture

We will consider the representation of x[n] using the samples of its
spectrum X(f). This will lead to the definition of the discrete Fourier
Transform (DFT).

4 / 30



Frequency domain sampling

Let’s consider the spectrum of a discrete-time aperiodic signal x[n]! Its
spectrum is

● continuous (why?)

● periodic (why?)

We want to represent the continuous spectrum with its samples in the
frequency domain:

X (ω) =
∞
∑

n=−∞
x[n]e−jωn → X [kδω]

Fundamental questions (analogous to time-domain sampling):

● How many samples do we need?

● How to reconstruct the continuous spectrum?
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Frequency domain sampling

Because of the periodicity, we only need to sample in the range
0 ≤ ω ≤ 2π. Let’s take N equidistant samples:

X(ω) =
∞
∑

n=−∞
x[n]e−jωn ⇒

X(
2π

N
k) =

∞
∑

n=−∞
x[n]e−j2πkn/N , k = 0,1, ...,N − 1

= ... +
−1
∑

n=−N
x[n]e−j2πkn/N +

N−1
∑

n=0
x[n]e−j2πkn/N +

2N−1
∑

N

x[n]e−j2πkn/N + ...

=

∞
∑

m=−∞

mN+N−1
∑

n=mN

x[n]e−j2πkn/N

=

N−1
∑

n=0

∞
∑

m=−∞
x[n −mN]e−j2πkn/N

=

N−1
∑

n=0
xp[n]e

−j2πkn/N

Note the analogy with the derivation related to time-domain sampling in the previous

lecture! Let’s define xp[n] =
∞
∑

m=−∞
x[n −mN] !
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Frequency-domain sampling

xp[n] =
∞
∑

m=−∞
x[n −mN]

Considering that xp[n] is periodic with period N, it can be expanded in
a Fourier series as:

xp[n] =
N−1
∑
k=0

cke
j2πkn/N , with n=0, 1, ... N-1, where (synthesis)

ck =
1

N

N−1
∑
n=0

xp[n]e
−j2πkn/N , with k=0, 1, ... N-1 (analysis)

ck =
1

N
X (

2π

N
k)
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, with k=0, 1, ... N-1 (analysis)

ck =
1

N
X (

2π

N
k) Result from the previous derivation!
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, with k=0, 1, ... N-1 (analysis)
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1

N
X (

2π

N
k) Let’s substitute into the synthesis equation!
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Reconstruction of a periodic signal

xp[n] =
1

N

N−1
∑
k=0

X (
2π

N
k)e j2πkn/N , n = 0, 1, ... N - 1

This result provides the reconstruction formula of the signal xp[n] (i.e.
periodic extension of the finite sequence x[n]) from the samples of its
spectrum X (ω).

What about reconstrucing x[n]?
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Reconstruction of an aperiodic signal

xp[n] is a periodic extension of x[n]⇒
⇒ x[n] can be reconstructed if there is no aliasing in the time domain.

x[n] must be time-limited to less than the period N of xp[n]
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Reconstruction of an aperiodic signal

Given a finite-duration sequence x[n] which is non-zero at the interval
0 ≤ n ≤ L − 1, then, for any N ≥ L

x[n] = xp[n] 0 ≤ n ≤ N − 1

so that x[n] can be recovered from its N-periodic extension xp[n]
without ambiguity.

Sampling in frequency domain

The spectrum of an aperiodic discrete-time signal with finite duration L
can be exactly recovered from its samples at frequencies ωk = 2πk/N, if
N ≥ L.
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Frequency domain sampling

Let’s consider the spectrum of a discrete-time aperiodic signal x[n]! Its
spectrum is

● continuous (why?)

● periodic (why?)
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Reconstruction procedure

X (ω) =
∞
∑

n=−∞
x[n]e−jωn =

N−1
∑
n=0

xp[n]e
−jωn

=
N−1
∑
n=0

[
1

N

N−1
∑
k=0

X (
2π

N
k) e j2πkn/N] e−jωn

=
N−1
∑
k=0

X (
2π

N
k)[

1

N

N−1
∑
n=0

e−j(ω−2πk/N)n]

=
N−1
∑
k=0

X (
2π

N
k)P (ω −

2π

n
k) , where

P(ω) ≡
1

N

N−1
∑
n=0

e−jωn =
1

N

1 − e−jωN

1 − e−jω
=

1

N

sin(ωN/2)

sin(ω/2)
e−jω(N−1)/2
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val. Inside it is equal to xp[n]
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Reconstruction formula for
the periodic extension

Let’s organize it to the form
of the TD interpolation for-
mula!
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Interpolation function

∣P(ω)∣ = ∣ 1N
sin(ωN/2)
sin(ω/2) e

−jω(N−1)/2∣

How does this
compare with the
ideal time-domain
interpolation function

g(t) = sin(π/T)t
(π/T)t ?

13 / 30



Discrete Fourier Transform
We have shown that, given a discrete time signal x[n], it is possible to
reconstruct its spectrum X (ω) from its N equidistant samples in case
x[n] is of finite length with n = 0,1, ...,L − 1 and N ≥ L.

Definition

The Discrete Fourier Transform (DFT) of a sequence x[n] is

X [k] =
N−1
∑
n=0

x[n]e−j2π
kn
N , for 0 ≤ k ≤ N − 1
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Inverse Discrete Fourier Transform

We have also shown that the discrete time signal x[n] can be
reconstructed from N equidistant samples of its spectrum X (ω) in case
x[n] has finite length with n = 0,1, ...,L − 1 and N ≥ L

Definition

The DFT values (i.e. X [k], 0 ≤ k ≤ N − 1) uniquely define the discrete
time signal x[n], n = 0,1, ...L − 1, L ≤ N through the Inverse Discrete
Fourier Transform (IDFT):

x[n] =
1

N

N−1
∑
k=0

X [k]e j2π
kn
N , for 0 ≤ n ≤ N − 1
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DFT as a linear transform
After defining WN = e−j2π/N , the DFT and IDFT can be expressed as:

X [k] =
N−1
∑
n=0

x[n]W kn
N k = 0,1, ...N − 1

x[n] =
1

N

N−1
∑
k=0

X [k]W −kn
N n = 0,1, ...N − 1

Let’s introduce:

xN =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x(0)

x(1)

x(2)

⋮

x(N − 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

WN =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W 0
N W 0

N W 0
N . . . W 0

N

W 0
N W 1

N W 2
N . . . W

(N−1)
N

W 0
N W 2

N W 4
N . . . W

2(N−1)
N

⋮ ⋮ ⋮ ⋱ ⋮

W 0
N W

(N−1)
N W

(2N−1)
N . . . W

(N−1)(N−1)
N

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

XN =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X (0)

X (1)

X (2)

⋮

X (N − 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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DFT as a linear transform

Then we can write the DFT and IDFT using the matrix notation:

(1) DFT: XN =WNxN

(2) IDFT: xN =
1

N
WH

NXN , where ()
H denotes the compex conjugate

Expanding (1):

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X (0)

X (1)

X (2)

⋮

X (N − 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W 0
N W 0

N W 0
N . . . W 0

N

W 0
N W 1

N W 2
N . . . W

(N−1)
N

W 0
N W 2

N W 4
N . . . W

2(N−1)
N

⋮ ⋮ ⋮ ⋱ ⋮

W 0
N W

(N−1)
N W

(2N−1)
N . . . W

(N−1)(N−1)
N

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x(0)

x(1)

x(2)

⋮

x(N − 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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DFT as a linear transformation

Observations:

● The elements on the first row and columns are 1: W0
N = 1.

● WN is a symmetric matrix

Assuming that WN is invertible, then

XN =WNxN

W−1
N XN =W−1

N WNxN

W−1
N XN = xN

We have established that xN = 1
NW

H
NXN . Therefore, W−1

N exists and

W−1
N =

1

N
WH

N ⇒WNW
H
N = NIN
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DFT as a linear transformation

Let’s define the normalized DFT matrix as N− 1
2WN . Then

(N− 1
2WN)(N− 1

2WH
N) = IN

,i.e. the normalized DFT matrix is unitary. It follows that the columns
of the matrix are orthonormal.

DFT as a projection on an orthonormal basis

The columns of the normalized DFT matrix form an orthonormal basis
in a complex N-dimensional vector space. Therefore, the DFT
coefficient, i.e the values X [k] can be viewed as the coordinates of x[n]

in this basis (up to the constant factor N− 1
2 ).
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Example 1

Let’s compute the four-point DFT of a sequence: x[n] = [0,1,2,3]

Solution:

1 Determine W4!

W4 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W 0⋅0
4 W 0⋅1

4 W 0⋅2
4 W 0⋅3

4

W 1⋅0
4 W 1⋅1

4 W 1⋅2
4 W 1⋅3

4

W 2⋅0
4 W 2⋅1

4 W 2⋅2
4 W 2⋅3

4

W 3⋅0
4 W 3⋅1

4 W 3⋅2
4 W 3⋅3

4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W 0
4 W 0

4 W 0
4 W 0

4

W 0
4 W 1

4 W 2
4 W 3

4

W 0
4 W 2

4 W 0
4 W 2

4

W 0
4 W 3

4 W 2
4 W 1

4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1

1 −j −1 j

1 −1 1 −1
1 j −1 j

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2 X4 =W4x4 = [

6
−2 + 2j
−2

−2 − 2j

]
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Example 2

x[n] = sin(θn) , 0 ≤ n ≤ N − 1 , N = 60

Case 1:
θ is an integer multiple of 2π/N
e.g. θ = 2π ⋅ 5/N

Case 2:
θ is not an integer multiple of 2π/N
e.g. θ = 2π ⋅ 5.5/N
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Example 2 - Explanation

In DFT synthesis, the samples of x[n] are a linear combination of
orthogonal basis vectors:

x[n] =
N−1
∑
k=0

X [k]e j2π
kn
N , for 0 ≤ n ≤ N − 1

● If the signal frequency θ matches one of the basis functions’
frequency, then x[n] can be written by scaling that particular basis
function (and its complex conjugate). All other coefficients are
zero.

● If the continuous spectrum was sampled in such a way that none of
the basis functions match the signal frequency, then all basis
functions are needed in the linear combination.

Alternative explanation: The periodic extension of the second sequence is not

a samples sine wave!
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DFT and zero-padding

Zero-padding

● Does not provide extra information: spectrum can be recovered
already from only L samples of the spectrum

● Does improve visualization

● IDFT will gives back the zero-padded sequence
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Properties of the DFT

● See also table 7.1 - symmetry properties

● Pratice: Brightspace quiz
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Multiplication of DFTs

Given two finite duration sequences x1[n] and x2[n] and their N-point
DFTs. The product of these DFTs, X3[k] = X1[k] ⋅X2[k] is the DFT of
a third sequence x3[k].

Can we write x3[n]
in terms of x2[n] and x3[n]?
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Multiplication of DFTs

x3[m] =
1

N

N−1
∑
k=0

X3[k]e
j2πkm/N

=
1

N

N−1
∑
k=0

X1[k]X2[k]e
j2πkm/N

=

=
1

N

N−1
∑
k=0

[
N−1
∑
n=0

x1[n]e
−j2πkn/N

] [
N−1
∑
l=0

x2[l]e
−j2πkl/N

] e j2πkm/N

= =
1

N

N−1
∑
n=0

x1[n]
N−1
∑
l=0

x2[l] [
N−1
∑
m=0

e j2πk(m−n−l)/N] =

=
1

N

N−1
∑
n=0

x1[n]
N−1
∑
l=0

x2[l]
N−1
∑
k=0

ak , with a = e j2π(m−n−l)/N
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Multiplication of DFTs

N−1
∑
k=0

ak =

⎧⎪⎪
⎨
⎪⎪⎩

N a = 1
1−aN
1−a a ≠ 1

=

⎧⎪⎪
⎨
⎪⎪⎩

N l = m − n + pN with p an integer

0 otherwise

a= e j2π(m−n−l)/N

(i) a = e j2π(m−n−l)/N = 1 if (m − n − l)/N is an integer

(ii) aN = (e j2π(m−n−l)/N)
N
= e j2π(m−n−l) = 1 if a ≠ 0
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Multiplication of DFTs
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∑
n=0

x1[n]x2[m − n]N
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Multiplication of DFTs
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N−1
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n=0

x1[n]x2[m − n + pN]

≡
N−1
∑
n=0

x1[n]x2[m − n]N

For a given m and n, l = m + n + pN can only be true for one specific p,
because l ≤ N

28 / 30



Multiplication of DFTs
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For p=0 this would be a convolution sum. However, the index of x2 is always
shifted back to the interval between 0 and N-1. This can be expressed using
the modulo operator.
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Multiplication of DFTs
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Multiplication of the DFT of 2 sequences is the so-called circular convolution
in time domain.
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Multiplication of DFTs - Example

Channel estimation (EE2T11):

Deconvolution in the frequency
domain:

1 Compute X (k) and Y (k), the
DFTs of x and y (microphone
close and far from the
loudspeaker, resp.)

2 Compute H(k) = Y (k)
X(k)

3 Compute h(k) from H(k)
using the IDFT
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DFT - Example 4

Channel estimation result:

As expected, the impulse response tends to zero after the initial peak.
However, an increase in values is observed in the end of the response. These
values belong to the negative time of the impulse response. They appear in
the end due to the circular convolution proptery of DFT.
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