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Recap: Ideal sampling and reconstruction
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What do we see in this video?

Click here!
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https://www.youtube.com/watch?v=B8EMI3_0TO0


Recap: Spectrum of a sampled signal

Fs ≥ 2FH

otherwise: Aliasing!

Sampling theorem

If the signal is bandlimited, it is possible to reconstruct the original
signal from the samples, provided that the sampling rate is at least twice
the highest frequency contained in the signal (i.e. the Nyquist rate).
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Non-ideal sampling and reconstruction

1,2

3
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Goal of this lecture

● Part 1: Non-bandlimited signals
● Explain the phenomenon of aliasing
● Anti-aliasing filters

● Part 2: Bandpass signals
● How to sample bandpass signals?
● How to reconstruct bandpass signals?

● Part 3: Reconstruction in practice - linear interpolation
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Part 1
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Aliasing

● Occurs when sampling with Sampling with Fs < 2FH !
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Aliasing

● Occurs when sampling with Sampling with Fs < 2FH !
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Aliasing

● Occurs when sampling with Sampling with Fs < 2FH !
● Effect of aliasing: example 3

Original speech

Sampled speech

Sampling after prefilter

Landline phone audio signal sampled at 8kHz!

image source

8 / 34



null

2003-02-21 13:11:15 UTC

12.744


null

10.728


null

10.408

https://archive.cnx.org/contents/534e9c09-7761-47cd-97f6-f5f4a8f9193f@6/analyzing-the-spectrum-of-speech#spectrogram


Sampling of non-bandlimited signals

To avoid aliasing when sampling at a rate Ωs , a ”prefilter” or
”antialiasing filter” Haa(Ω) with a cut-off at Ωs/2 should be used prior
to sampling:

Haa(Ω) =
⎧⎪⎪⎨⎪⎪⎩

1, if ∣Ω∣ ≤ Ωs/2

0, otherwise

However, a very sharp filter in the analog domain is difficult to
implement.
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Antialiasing in practice
Solution 1:

● Choose a desired ΩN (e.g. 20kHz, then the Nyquist rate would be
2 ⋅ΩN = 40 kHz)

● Take a somewhat larger sampling rate Ωs = 2 ⋅ (1 + r)ΩN with
0 < r < 1 (e.g. 44,1kHz → CD!)

● Make use of a non-ideal lowpass filter with a transition band
between ΩN and (1 + r)ΩN = Ωs/2

● filter further in digital domain if needed
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Antialiasing in practice

Solution 2:

● Use a cheap antilaliasing filter with a broad transition band

● oversample xa(t) with a factor 2M: Ωs = 2MΩN

● digitally filter unwanted frequencies, where sharp filters are cheaper
to implement

● downsample with a factor M (see multirate systems!)
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Part 2
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Sampling of bandpass signals

Bandpass signal

A bandpass signal with bandwidth B and center frequency Fc is a signal
with nonzero spectral content at frequencies F defined by
0 < FL < ∣F ∣ < FH , where Fc = FL+FH

2 and B = FH − FL.

FL = 200Hz , FH = 250Hz , B = 50Hz , Fc = 225Hz

According to the sampling theory, we should sample with Fs = 500Hz .
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Nyquist sampling of a bandpass signal

ÚÚÚÙ
X (F ) = Fs

∞
∑

k=−∞
Xa(F − kFs) with Fs = 500Hz
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Example: spinning wheel

Let’s assume that the car drives on the highway with 100-120km/h and
has a 16 inch wheel (20-25Hz)!

Exercise:

● Let’s assume that we sample the signal with
Fs = 8Hz , Fs = 10Hz and Fs = 30Hz .
Sketch the resulting spectrum!

● Answer the following questions (for each Fs):

1 Is the Nyquist rate respected?
2 Is there aliasing?
3 Can we reconstruct the original signal?
4 Can you suggest other sampling rates that will enable

reconstruction?
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Solution
Fs = 30Hz :

Fs = 10Hz :

Fs = 8Hz :

The Nyquist rate is not respected in any of the three cases. Aliasing
occurs in each case, yet, it is possible to reconstruct, except for
Fs = 8Hz (=destructive aliasing)
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Sampling of a bandpass signal: example 1

Integer band positioning

In case FH = mB sampling with Fs = 2B is possible without aliasing.

In the current example FH = 250, B = 50 and m = 5.
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Sampling of a bandpass signal: example 1
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Sampling of a bandpass signal: example 2

In the second example FH = 200, B = 50 and m = 4.

ÚÚÚÙ
X (F ) = Fs

∞
∑

k=−∞
Xa(F − kFs) with Fs = 2B = 100Hz
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Reconstruction and downconversion

Downconversion: we may reconstruct a
continuous bandpass signal centered at
intermediate frequencies
Fc ′ = ±(kB +B/2).

With k = 0 we obtain the equivalent
baseband signal.

Note: the baseband spectra with even
and odd band positions signal are
’inverted’.
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Reconstruction and downconversion

The original signal can be
reconstructed using

xa(t) =
∞
∑

n=−∞
xa(nT )g(t − nT ), with

g(t) = sinπBt

πBt
cos2πFct

Note: g(t) is equal to the interpolation
function of bandlimited signals,
modulated with the carrier frequency
Fc

Downconversion: we may
reconstruct a continuous bandpass
signal centered at intermediate
frequencies Fc ′ = ±(kB +B/2).

With k = 0 we obtain the equivalent
baseband signal.

Note: the baseband spectra with even
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Example: radio receiver

FM radio uses VHF band 87.5 - 108 MHz. Each channel uses a 0.2MHz
wide band. However, designing a filter with a tunable pass band is
difficult.

● Analog radio:
● Superheterodyne (Edwin Armstrong 1918):
● recieved signal is shifted to a fixed intermediate frequency (IF) using

a mixer with a tunable local oscillator (LO)
● signal can be amplified at IF, demodulated and low-pass filtered to

reconstruct the broadcast signal

● Digital radio:
● choosing an appropriate sampling frequency will digitally

downconvert the signal to baseband
● reconstruction with a low-pass filter
● Challenge: A/D conversion speed must be consistent with FH

● Other applications: radar, satellite communications, etc.
● Further reading: Direct RF sampling

21 / 34

https://www.youtube.com/watch?v=hz_mMLhUinw
https://medium.com/drill/direct-digitization-architectures-in-modern-rf-systems-6ce7d4fc02b4


Arbitrary band positioning
● A signal has arbitrary band positioning, when there is no particular

relationship between FH and B (as opposed to integer band
positioning)

● How to choose Fs in this case?

Conditions on Fs :

(k − 1)Fs − FL ≤ FL

kFs − FH ≥ FH

22 / 34



Arbitrary band positioning

Reorganizing the above conditions, we can arrive to the following
expression:

2

k

FH
B

≤ Fs
B

≤ 2

k − 1
(FH
B

− 1) , kmax = ⌊FH
B

⌋

For our signal, we know FH
and B.

Then, we can choose an
Fs/B along the vertical line
corresponding to FH/B

See problem 6.11
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Part 3
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Reconstruction in practice

Ideal interpolation:

x(t) =
∞
∑

n=−∞
x[n]gideal(t − nTs) =

∞
∑

n=−∞
x[n]sin(π/Ts(t − nTs))

π/Ts(t − nTs)

However:

● sinc function is infinite and nondeterministic!

● in practice we sum from -L to L

● quality of reconstruction increases with L

● not practical in real-time applications

● instead: sample-and-hold (zero-order hold) or linear interpolation
(first order hold)
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Sample-and-hold interpolation

● time domain:

x(t) =
∞
∑

n=−∞
x[n]gSH(t − nTs) , gSH(t) =

⎧⎪⎪⎨⎪⎪⎩

1 0 ≤ t ≤ Ts

0, otherwise

● frequency domain:

GSH(F ) = ∫
∞

−∞
gSH(t)e−j2πFtdt = Ts

sinπFTs

πFTs
e−j2πF(Ts/2)
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Linear interpolation

xlin(t) = x[1] + x[2] − x[1]
Ts

(t −Ts), Ts ≤ t ≤ 2Ts

In general:

xlin(t) = x[n] + x[n + 1] − x[n]
Ts

(t − nTs), nTs ≤ t ≤ (n + 1)Ts

27 / 34



Linear interpolation

What should be glin?:

● x(t) between x[n] and x[n − 1]
only depend in the value of these
2 samples

● ”echo” of x[n] does not extend
beyond x(t −Ts) or x(t +Ts)

● the sum of the ”echos” of x[n]
and x[n + 1] are a linear function
of t

Reconstruction formula:

xlin(t) =
∞
∑

n=−∞
x[n]glin(t − nTs)

, where glin(t) =
⎧⎪⎪⎨⎪⎪⎩

1 − ∣t∣Ts
, if ∣t ∣ ≤ Ts

0, otherwise
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Linear interpolation

● time domain:

xlin(t) =
∞
∑

n=−∞
x[n]glin(t − nTs), where glin(t) =
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1 − ∣t ∣Ts
, if ∣t ∣ ≤ Ts

0, otherwise

● frequency domain:

Glin(f ) = Ts[
sin(πFTs)
πFTs

]2

● Problem 6.15: formulas are presented with a delay of T
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Comparison of interpolation filters

Gideal(F ) =
⎧⎪⎪⎨⎪⎪⎩

Ts , ∣F ∣ ≤ Fs/2

0, otherwise

GSH(F ) = Ts
sin(πFTs)
πFTs

e−2jπF(Ts/2)

Glin(F ) = Ts[
sin(πFT )
πFTs

]2
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Distortion due to practical interpolation

↓ sampling

↓ reconstruction

x
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Compensation with a postfilter
Let’s denote the actual interpolation filter with H0 and the ideal
interpolation filter with Hr ! The postfilter Hpf compensates for the
difference:

Hpf (Ω) = Hr(Ω)
H0(Ω) =

⎧⎪⎪⎨⎪⎪⎩

Ts/H0(Ω), if ∣Ω∣ ≤ Ωs/2

0, otherwise

In practice, this filter is applied in the digital domain before the D/A
converter
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Summary

⇓ instead
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Summary

Discrete time processing of continuous signals

Provided that the analog signal xa(t) is band-limited with bandwidth B
and we sample with an Fs ≥ 2B, then the discrete-time processing of
x[n] = xa(nTs) with a system H(F ) is equivalent to the analog
processing of xa(t) with a system Ha(F ) in case Ha(F ) = H(F ) for
∣F ∣ ≤ Fs/2 and Ha(F ) = 0 otherwise.

Practical limitations and solutions:

● xa(t) is not (perfectly) band-limited → antialiasing filter

● A/D conversion: sampling is finite and not instantaneous!

● D/A converion: → interpolation and postfiltering
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