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Course organization - DSP track

● Information
● Website: general overview
● Brightspace: more detailed information, quiz, forum

● Organization
● DSP 1x a week(±) on Monday, Tuesday, or Thursday
● Exam comprises both tracks
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Prerequisite: EE2S11 Signals and Systems

● Continuous-time vs discrete-time signals

● Linear time-invariant systems

● Fourier Transform, spectral representation

● Discrete-time Fourier transform

⋮
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Study materials - DSP track

● Theory
● Lectures
● Book (Proakis, Manolakis: Digital Signal Processing)
● Collegerama videos
● Important notes:

1. Studying the slides is not sufficient; you need to read the book!
2. Attending lectures is important; we solve exercises during lectures

● Practice
● Brightspace Quiz (easy)
● Exercises from book (more advanced)
● Past exams on website
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Lectures: Digital Signal Processing Track

Geethu Joseph
● Lectures 1-5

Mid-term exam (Lectures 1-4)

Bori Hunyadi
● Lectures 6 - 8

● Exercise session

Final exam (Lectures 5-8)
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Exam

● The exam is conducted in two parts; both partial exams contain 50% of
questions from each track

● The final grade is the average of the two partial exam results, rounded to half a
digit

● The re-examination is conducted in one part (over all lecture material)

● The exams are closed-book, with one A4-size page (2 sides) of handwritten
notes permitted
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Introduction and Applications
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Introduction

What is a signal?

Any measurable quantity that conveys information

Examples

1 electrical: voltage output of amplifier

2 mechanical: acceleration of a car

3 acoustic: air pressure measured by a microphone

4 biological: body temperature

5 image and video: intensities of each pixel
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Classification of Signals

1 Continuous-time vs discrete-time

2 Unquantized (continuous-amplitude) vs quantized (discrete amplitude)
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Introduction

Digital Signal Processing

Processing of analog signals employing discrete-time operations implemented on
digital hardware
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Analog vs Digital Signal Processing

⇓ instead

Pro:

● accuracy

● flexibility

● ease of data storage

Cons:

● extra complexity

● limited bandwidth

● quantization effects
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Digital signal processing

sampling
quantization

filtering
spectral analysis

reconstruction

13 / 41



DSP applications

● Digital communication

● Audio signal processing

● Speech signal processing

● Image Processing

● Medical applications
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DSP applications (1)

Mobile communication:
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DSP Applications (2)

EEG processing for epileptic seizure detection:
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DSP Applications (3):

Seizure detection pipeline:
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This Course

● Sampling and reconstruction
● Non-ideal sampling and reconstruction
● Sampling in the frequency domain: DFT
● DFT basics
● Spectral analysis and filtering using DFT
● Efficient implementation of DFT: FFT

● Quantization and effects
● Quantization, coding, sigma-delta
● Round-off effects and filter structures

● Multirate signal processing
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Recap: Ideal sampling and reconstruction

Reference: Chapter 6.1 of the textbook
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Ideal sampling and reconstruction

Under which conditions can we
reconstruct xa(t)?

To answer this question, we will
investigate the form of the digital
signal in the frequency domain.
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Recap: Fourier Transform in continuous and discrete time

FT

Xa(F) = ∫
∞

−∞
xa(t)e−j2πFtdt

Inverse FT

xa(t) = ∫
∞

−∞
Xa(F)e j2πFtdF

DTFT

X(f ) =
∞
∑

n=−∞
x[n]e−j2πfn

Inverse DTFT

x[n] = ∫
1/2

−1/2
X(f )e j2πfndf

F [Hz]: frequency
Ω [radians/s]: angular frequency
Ω = 2πF

f [cycles/sample]: normalized frequency
ω [rad/sample]: normalized angular frequency
ω = 2πf

Ω = ω/T F = f ⋅ Fs
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Ideal sampling and reconstruction

Can we express the DTFT of the sampled signal using the FT of the analog signal?
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DTFT of the sampled signal Vs the FT of the analog signal

● Recall the relation between the sampled and analog signals

x[n] = xa(nT)

● Expressing them in using inverse (DT)FT,

∫
1
2

− 1
2

X(f )e j2πfndf = ∫
∞

−∞
Xa(F)e j2πFtdF ∣t=nT

= ∫
∞

−∞
Xa(F)e j2πFTndF

● We try to find a function g rewrite

∫
∞

−∞
Xa(F)e j2πFTndF = ∫

1
2

− 1
2

g(Xa(f ))e j2πfndf

Ô⇒ X(f ) = g(Xa(f ))
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DTFT of digital vs FT of analog signal

Our goal

∫
∞

−∞
Xa(F)e j2πFTndF =∫

1/2

−1/2
g(Xa(f ))e j2πfndf Ô⇒ X(f )=g(Xa(f ))

1 Divide the infinite interval to Fs = 1/T long intervals

∫
∞

−∞
Xa(F)e j2πFTndF = ∫

∞

−∞
Xa(F)e j2πF/FsndF =

∞
∑

k=−∞

kFs+ Fs
2

∫
kFs− Fs

2

Xa(F)e j2πF/FsndF

2 Change of variables to match the limits of integrals f → F /Fs − k

∫
∞

−∞
Xa(F)e j2πFTndF =

∞
∑

k=−∞

1/2

∫
−1/2

Xa(Fsf + kFs)e j2π(f +k)nFsdf

3 Exchange sum and integration and note that e j2π(f +k)n = e j2πfn is periodic

∫
∞

−∞
Xa(F)e j2πFTndF =

1/2

∫
−1/2
[Fs

∞
∑

k=−∞
Xa((f − k)Fs)] e j2πfndf
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DTFT of digital vs FT of analog signal

Our goal

∫
∞

−∞
Xa(F)e j2πFTndF =∫

1/2

−1/2
g(Xa(f ))e j2πfndf Ô⇒ X(f )=g(Xa(f ))

We proved that

∫
∞

−∞
Xa(F)e j2πFTndF =

1/2

∫
−1/2
[Fs

∞
∑

k=−∞
Xa((f − k)Fs)] e j2πfndf

Ô⇒ X(f ) = Fs

∞
∑

k=−∞
Xa((f − k)Fs) =

1

Fs
X(F − kFs)

as F = f Fs
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Ideal sampling and reconstruction
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Ideal sampling and reconstruction
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Spectrum of the sampled signal

X(f ) = Fs

∞
∑

k=−∞
Xa((f − k)Fs)

Sampling theorem

If the signal is bandlimited, it is possible to reconstruct the original signal from the
samples, provided that the sampling rate is at least twice the highest frequency
contained in the signal (i.e., the Nyquist rate).
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Ideal reconstruction in frequency domain

Define an ideal low-pass filter G(f ):

G(F) =
⎧⎪⎪⎨⎪⎪⎩

F−1s , if ∣F ∣ ≤ Fs
2

0, otherwise

Apply it G(F) to X(F):
Xa(F) = G(F)X(F)
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Ideal reconstruction in time domain

● In the frequency domain, we have

Xa(F) = G(F)X(F),

where G(F) =
⎧⎪⎪⎨⎪⎪⎩

F−1s , if ∣F ∣ ≤ Fs
2

0, otherwise

● In the time domain, we have

xa(t) = g(t) ∗ x(t) =
∞
∑

n=−∞
x[n]g(t − nT),

where the interpolator is

g(t) = inverse DFTF(G(F)) = sin(πt/T)
πt/T
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The ideal interpolator

Sampled signal

x[n]
Terms in the convolution operation

Ideal interpolator

In the time domain, the ideal interpolator takes the linear combination of the
time-shifted versions of the interpolation function g(t) weighted with the sample
values x[n]. In the frequency domain, the ideal interpolator scales the spectrum with
F−1s and removes frequencies ∣F ∣ > Fs/2, i.e., removes the discrete-time spectral
periodicity.
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The ideal interpolator

Sampled signal

x[n]
Terms in the convolution operation

x[2] sin(π/T(t − 2T))(π/T(t − 2T)

Ideal interpolator

In the time domain, the ideal interpolator takes the linear combination of the
time-shifted versions of the interpolation function g(t) weighted with the sample
values x[n]. In the frequency domain, the ideal interpolator scales the spectrum with
F−1s and removes frequencies ∣F ∣ > Fs/2, i.e., removes the discrete-time spectral
periodicity.
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The ideal interpolator

Sampled signal

x[n]
Terms in the convolution operation

x[3] sin(π/T(t − 3T))(π/T)(t − 3T)

Ideal interpolator

In the time domain, the ideal interpolator takes the linear combination of the
time-shifted versions of the interpolation function g(t) weighted with the sample
values x[n]. In the frequency domain, the ideal interpolator scales the spectrum with
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Ideal sampling and reconstruction
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Ideal sampling and reconstruction

31 / 41



Quiz

Go to www.kahoot.it
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Quiz - question 1

The spectrum of a continuous-time signal is depicted above. Which one of the
figures below represents the spectrum of the sampled version of the signal?

Answer c
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Quiz - question 2

Aliasing occurs when we

a oversample a signal, i.e. with a sampling rate Fs ≫ 2FH

b sample an aperiodic signal

c sample below the Nyquist rate

Answer c
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Quiz - question 3

The reconstruction of an analog signal from its samples can happen using

a Highpass filter in the frequency domain

b Convolution with a sinc function in the time domain

c The inverse Fourier transform

Answer b
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Quiz - question 4

What is the Nyquist rate for the analog signal

xa(t) = 3 cos(50πt) + 10sin(300πt) + cos(100πt)?

a 300 Hz

b 600 Hz

c 100 Hz

Answer a
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Quiz - question 5

If a signal has a maximum frequency between 1000 Hz and 4000 Hz, which of the
below is the most appropriate sampling rate?

a 10000 Hz

b 2000 Hz

c 9000 Hz

Answer c
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Answer c
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Summary So Far

Nyquist Rate = Twice the maximum frequency
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Non-ideal sampling and reconstruction

1

2

3
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Sampling and reconstruction in practice

1 Delta pulse train for sampling: non-zero duration in practice

2 Signals often are non-low pass, non-bandlimited
● How to sample non-bandlimited signals?
● How to sample bandpass signals?

3 Sinc interpolation in practice is not possible: infinite length
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Next Lecture: Non-ideal Cases

1 Delta pulse train for sampling: non-zero duration in practice

2 Signals often are non-low pass, non-bandlimited
● How to sample non-bandlimited signals?
● How to sample bandpass signals?

3 Sinc interpolation in practice is not possible: infinite length

Solve the following exercises from the book: 6.1, 6.2, 6.3, 6.4, 6.5 (solutions
available on BrightSpace)
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