
Delft University of Technology

Faculty of Electrical Engineering, Mathematics, and Computer Science

Section Signal Processing Systems

Partial exam EE2S31 SIGNAL PROCESSING
Part 1: 23 May 2023 (13:30-15:30)

Closed book; two sides of one A4 with handwritten notes permitted. No other tools

except a basic pocket calculator permitted. Note the attached tables!

This exam consists of four questions (35 points). Answer in Dutch or English. Make clear

in your answer how you reach the final result; the road to the answer is very important.

Write your name and student number on each sheet.

Hint: Avoid losing too much time on detailed calculations, write down the general ap-

proach first.

Question 1 (11 points)

Given are two independent exponentially distributed random variables X and N , with proba-

bility density functions (pdfs)

fX(x) =

{
λe−λx for x ≥ 0

0 otherwise.
fN (n) =

{
λe−λn for n ≥ 0

0 otherwise.

where λ > 0. Although we are interested in X, we can only observe the process Y = X +N .

(a) Determine E[X3].

(b) Derive that Y has a second-order Erlang distribution, i.e.

fY (y) =

{
λ2 y e−λy y ≥ 0,

0 otherwise.

(c) Derive that the conditional pdf is

fY |X(y|x) =

{
λe−λ(y−x) y ≥ x
0 otherwise.

(d) Determine the joint pdf fX,Y (x, y).

(e) Determine X̂ML(Y ), the ML estimate of X given Y .

(f) Determine X̂MMSE(Y ), the MMSE estimate of X given Y .

(g) Determine the covariance cov[X,Y ] and subsequently X̂L(Y ), the LMMSE estimate of X

given Y .

Solution

(a) 2 pnt Use the MGF and its derivatives:

φX(s) =
λ

λ− s
, φ′X(s) =

λ

(λ− s)2
, φ′′X(s) =

2λ

(λ− s)3
, φ′′′X(s) =

6λ

(λ− s)4

Then E[X3] = φ′′′X(s)
∣∣
s=0

= 6
λ3

.
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(b) 1 pnt The MGF of Y is the product of the MGF of X and that of N , resulting in

φY (s) =

(
λ

λ− s

)2

As seen in the table, this is the MGF of an Erlang distributed RV with n = 2.

(c) 1 pnt Given X = x, we have Y = x+N , so that Y − x is distributed as N . Therefore,

fY |X(y|x) = fN (y − x) =

{
λe−λ(y−x), y ≥ x
0, otherwise

(d) 1.5 pnt

fX,Y (x, y) = fY |X(y|x)fX(x) = λe−λ(y−x)λe−λx =

{
λ2e−λy, y ≥ 0, x ≥ 0, x ≤ y
0, otherwise

(e) 1.5 pnt The ML estimate maximizes the likelihood function over X,

X̂(y) = arg max
x

fY |X(y|x) = arg max
0≤x≤y

λe−λ(y−x)

Since x ≤ y, this is maximal for x = y. Hence X̂(Y ) = Y .

(f) 2.5 pnt First derive the ‘posterior’ conditional probability

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

λ2e−λy

λ2 y e−λy
=

{
1
y , 0 ≤ x ≤ y
0, otherwise

(As a function of X, this is recognized as a uniform distribution.) Then the MMSE is

X̂(y) = E[X|Y = y] =

∫
xfX|Y (x|y)dx =

∫ y

0
x

1

y
dx =

1

y

[
1

2
x2
]y
0

=
1

2
y

Therefore, X̂(Y ) = 1
2Y .

(g) 1.5 pnt Using independence of X and N and properties of the exponential distribution

cov[X,Y ] = cov[X,X +N ] = cov(X,X) + 0 = var[X2] =
1

λ2

µX =
1

λ
, µY =

2

λ
, var[Y ] =

2

λ2

X̂(Y ) =
cov[X,Y ]

var[Y ]
(Y − µY ) + µX

=
1

2
(Y − 2

λ
) +

1

λ

=
1

2
Y .

Not coincidentally equal to the MMSE estimator, since that one happened to be linear.
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Question 2 (6 points)

In wireless communication, the received power fluctuates due to ran-

dom obstruction by large buildings and hills. This “shadowing”,

expressed in dB, is often modeled as a normal (i.e. Gaussian) dis-

tribution. Equivalently, the received power has a log-normal distri-

bution.

Let X > 0 be lognormal distributed with parameters (µ, σ2), i.e., ln(X) = Y ∼ Gaussian(µ, σ2).

(a) Derive that E[Xt] = eµt+σ
2t2/2, and determine expressions for E[X] and var[X].

(b) Let X1 and X2 be two independent log-normal random variables with parameters (µ1, σ
2
1)

and (µ2, σ
2
2) respectively.

Show that their product W = X1X2 is a log-normal random variable, and determine its

parameters.

Let X be lognormal with parameters µ = 0 and σ = 0.25.

(c) Determine P[X > 1.5].

(d) Use the Chebychev inequality to find an approximation for P[X > 1.5].

Solution

(a) 1.5 pnt With X = eY and using the MGF of a Gaussian variable, the result follows directly:

E[Xt] = E[etY ] = eµt+1/2σ2t2

E[X] = eµ+σ
2/2

E[X2] = e2µ+2σ2

var[X] = E[X2]− E[X]2 = e2µ+2σ2 − (eµ+σ
2/2)2 = (eσ

2 − 1)(e2µ+σ
2
)

(b) 1.5 pnt

ln(W ) = ln(X1) + ln(X2) = Y1 + Y2

Since Y1 and Y2 are normal, and the sum of two normal random variables is again normal,

then Y = Y1 + Y2 is also normal. It follows that W is lognormal.

Y has mean µY = µ1 + µ2 and variance σ2Y = σ21 + σ22. Thus, the parameters of W are

(µ1 + µ2, σ
2
1 + σ22).

(c) 1.5 pnt Using the provided Table 4.1 on Φ(z),

P[X > 1.5] = P[ln(X) > ln(1.5)] = 1−Φ(ln(1.5)/0.25) = 1−Φ(1.6219) = 1−0.9474 = 0.0526

(d) 1.5 pnt Using the result of (a),

µX = e0.25
2/2 = 1.0317

var[X] = (eσ
2 − 1)(e2µ+σ

2
) = 0.0687

P[X > 1.5] = P[X − µX > 1.5− µX ]

< P[|X − µX | > 1.5− µX ]

<
var[X]

(1.5− µX)2
= 0.3133
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Alternatively, first apply the log, and then use µY = 0, var[Y ] = 0.25:

P[X > 1.5] = P[ln(X) > ln(1.5)]

= P[Y > ln(1.5)]

<
(0.25)2

ln(1.5)2
= 0.38

Question 3 (10 points)

We want to sample an analog signal x(t), with frequency spectrum shown in figure a, below.

The signal is contaminated with wide-band noise n(t), shown in figure b.

(a) Design (i.e. characterize the frequency response of) an ideal anti-aliasing filter that removes

the noise outside the bandwidth of the desired signal x(t)!

(b) What is the minimum sampling rate to avoid destructive aliasing?

(c) Assuming this sample rate, sketch the magnitude spectrum of the resulting sampled signal

x[n].

(d) What would be the minimum sampling rate for a signal v(t), where

v(t) = x(t) cos(400πt)

(e) Now let us reconstruct x̂a(t) from its samples x[n] (forget about v(t)) using sample-and-

hold interpolation. Sketch the magnitude spectrum of x̂a(t)!

Hint: Recall that sample-and-hold interpolation is characterized in the frequency domain

as GSH(F ) = T sin(πFT )
πFT e−2πF (T/2).

(f) What is the highest frequency contained in x̂a(t)?

(g) At which frequencies will the spectrum of x̂a(t) be equal to 0?

Solution

(a) 1 pnt

H(F ) =

{
1 |F | ≤ 50Hz

0 otherwise

(b) 1 pnt 100 Hz.
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(c) 1 pnt

(d) 3 pnt

v(t) = x(t) cos(400πt) = x(t) cos(2π200t), therefore, using the modulation property

V (Ω) =
1

2
(X(Ω− 2π200) +X(Ω + 2π · 200)), hence

V (F ) =
1

2
(X(F − 200) +X(F + 200))

Therefore, this is a bandpass signal with FH = 250 Hz and B = 100Hz. The minimum

sampling rate is:

Fs =
2FH
kmax

, where

kmax = bFH
B
c

Hence, kmax = 2 and Fs = 250 Hz.

(e) 2 pnt See below. Note that the |X(F )| and |GSH(F )| are scaled with 1/Fs and Fs, respectively,

for visualization purposes.
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(f) 1 pnt As shown in the sketch, the high frequencies (i.e. shifted copies of the original spectrum)

are significantly attenuated, although not completely removed. Hence, the reconstructed

signal has infinitely high frequencies, although the magnitude of these frequencies tend to

0.

(g) 1 pnt The signal has zero magnitude at frequencies where the SH interpolator has zero-crossings,

i.e. at integer multiples of Fs = 100 Hz, as well as where the sampled spectrum had 0

magnitude, i.e. at 50 +N · 100 Hz for any N integer.

Question 4 (8 points)

Given the digital system below, with input x[n] =
[
1 2 3 4

]
, filter impulse response h[n] =[

0 0 1 0
]
, and output y[n].

(a) Determine the output y[n]!

(b) The 4-point DFTs of x[n] and h[n] are equal to:

X[k] =
[
10 −2 + 2j −2 −2− 2j

]
and

H[k] =
[
1 −1 1 −1

]
Determine the IDFT of H[k] ·X[k] !
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(c) Compare the solution of part (a) and part (b). Are the samples of the two sequences the

same? Explain why or why not!

(d) The input x[n] can be considered as viewing an infinite sawtooth sequence through a

rectangular window. Let’s consider the use of the 4-point DFT given in part (b) to analyse

the spectrum of the infinite sawtooth. The problem is that the finite windowing (with a

window of length N = 4 in our case) effects the quality of the spectral estimation. This

effect is best explained in frequency domain: the window main lobe limits the spectral

resolution, while the sidelobes cause spectral leakage.

What can I do differently to reduce spectral leakage? Give two options!

Solution

(a) 2 pnt The output is the linear convolution of the input and the impulse response. This can be

calculated as the product of the convolution matrix and the input sequence:

y[n] =



0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




1

2

3

4

 =



0

0

1

2

3

4

0


(b) 2 pnt The IDFT is computed as (matrix notation): 1

NW
H
N XN . Here

XN = H(k) ·X(k) =
[
10 2− 2j −2 2 + 2j

]
Then,

1

4


1 1 1 1

1 j −1 −j
1 −1 1 −1

1 −j −1 j




10

2− 2j

−2

2 + 2j

 =


3

4

1

2


(c) 2 pnt They are not the same. The linear convolution results in a sequence of 4 + 4 − 1 = 7

samples. This needs at least a 7-point DFT to be represented without temporal aliasing.

Instead, we multiplied the 4-point DFTs of the sequences. This causes temporal aliasing:

the first sample becomes 0+3, the second sample 0+4 and the third sample 1+0. In other

words, the multiplication of DFT is equivalent to the circular convoltion of the sequences.

(d) 2 pnt Either take another window with smaller sidelobes (e.g. Hann) or take a larger window,

i.e. more samples.
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