
Delft University of Technology

Faculty of Electrical Engineering, Mathematics, and Computer Science

Section Signal Processing Systems

Partial exam EE2S31 SIGNAL PROCESSING
Part 2: 30 June 2023 (9:00-11:00)

Closed book; two sides of one A4 with handwritten notes permitted. No other tools

except a basic pocket calculator permitted. Note the attached tables!

This exam consists of four questions (35 points). Answer in Dutch or English. Make clear

in your answer how you reach the final result; the road to the answer is very important.

Write your name and student number on each sheet.

Hint: Avoid losing too much time on detailed calculations, write down the general ap-

proach first.

Question 1 (10 points)

The discrete-time filtering system shown below comprises an A/D converter sampling at rate

f1 = 100 Hz, an upsampler with L = 4, a bandpass filter with cut-off frequencies ω1 and ω2 and

gain A, and a D/A converter. The spectra of the input (Xa(F )) and the output (Ya(F )) of the

system are also shown. The upsampler and the bandpass filter can be considered together as a

‘bandpass upsampler’.

(a) Sketch the spectra of x[n] and xE [n]! Make sure that you indicate the magnitudes correctly,

and indicate both normalized angular frequencies (ω) and physical frequencies (F ) on your

graphs!

(b) If x[n] = {1, 2, 3, 2, 1}, what is the sequence xE [n]?

(c) What are the cut-off normalized angular frequencies ω1 and ω2 of the filter H(ω), consid-

ering the spectrum of xE [n] and the given output spectrum Y (F )?

(d) The transfer function of H(ω) can be written in the form of a two-component polyphase

decomposition as

H(z) = P0(z
2) + z−1P1(z

2)
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Use this polyphase decomposition to design a more efficient ‘bandpass upsampler’ and

sketch the new filter structure!

(e) Returning to the original system, let us redesign H(ω): our purpose is now not anymore

to bandpass filter the signal. Instead, we want design a new H(ω) in order to get a

system that produces an equivalent output as the alternative system shown below. Give

the necessary filter specifications!

(f) Which system is better in terms of signal to quantization noise ratio: the original system

(with the new H(ω)), or the alternative system? Explain!

Solution

(a) 2 pnt The digital spectrum is periodic with 2π, i.e. 100 Hz. The upsampled spectrum is com-

pressed relative to the normalized frequency axis, now 2π, is equivalent to 400 Hz. There-

fore, three extra copies of the spectrum are within the fundamental frequency interval

(shaded area).

(b) 1 pnt xE [n] = {1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0}.

(c) 1 pnt To obtain |Y (F )| at the output, a digital filter indicated in the spectrum in red is needed.

The cut-off frequencies are ω1 = π/4 and ω1 = 3π/4.
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(d) 2 pnt See figure below:

(e) 2 pnt It has to be a low-pass filter that removes the extra copies from the fundamental frequency

band, as shown below, with a gain of 4 (note that the sampled spectrum produced by the

alternative system has a maximum amplitude of 400 due to the higher sampling frequency!)

(f) 2 pnt The second system is better: the quantization noise power is independent of the sampling

rate and is therefore equal in both systems. However, the signal power is higher in the

second system, as the sampled spectrum has 4x higher magnitude due to the 4x higher

sampling rate. Remember: X(F ) = Fs

∞∑
k=−∞

Xa(F − k · Fs).

Question 2 (7 points)

Let us consider the quantization and coding of analog signals in the range between −1 and 1.

(a) Is quantization a linear process? Is it an invertible process? Explain your answer!

(b) Given N bits plus a sign bit, and assuming we use a simple sign-magnitude representation,

what is the largest quantization level? What is the corresponding code word?

Let us now consider the following first-order system:
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The quantization that takes place after multiplication uses N = 3 bits and rounds up (i.e., if

the value to be quantized is equal to the decision threshold, and therefore it is at equal distance

from 2 quantization levels, the higher quantization level is assigned). Due to the quantization,

the system does not produce the ideal output y[n]; instead, it produces v[n] as

v[n] = Q{av[n− 1]}+ x[n]

where Q{·} denotes the quantization operator.

(c) With an input x[n] = 3
8δ[n], write down the first 5 output values (v[n]) of the system!

(d) Compare this output to the output of the ideal infinite-impulse response system. What is

the difference? Explain! (no need to calculate)

Solution

(a) 1 pnt The function that maps input values to quantization level is non-linear (it is piece-wise

linear) and not invertible.

(b) 2 pnt The largest quantization value is 1 − 2−N , and the corresponding codeword is 0.1...1 (N

1s after the sign-but which is 0).

(c) 3 pnt

v[0] = Q{av[−1]}+ x[0] = Q{1
2
· 0}+ 3

8
=

3

8

v[1] = Q{av[0]}+ x[1] = Q{1
2
· 3
8
}+ 0 = Q{ 3

16
} =

2

8

Similarly,

v[2] =
1

8

v[3] =
1

8

v[4] =
1

8

(d) 1 pnt The ideal system’s output converges to 0 at infinity, while the quantized system reaches a

limit cycle.
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Question 3 (9 points)

Let A be a Uniform(1, 2) random variable, and consider the random process

X(t) = A+ cos(2πt) .

(a) Draw 3 realizations of X(t).

(b) Is the random process X(t) discrete-time or continuous-time; discrete-value or continuous-

value?

(c) Find the CDF FX(t)(x) and the PDF fX(t)(x).

(d) Is fX(t)(x) a complete description of the statistics of X(t)? (Motivate.)

(e) Find the mean E[X(t)].

(f) Find the autocovariance CX(t, τ) and the autocorrelation RX(t, τ).

(g) Is X(t) stationary? WSS? Ergodic? (Motivate.)

Solution

(a) 1 pnt

(b) 1 pnt Continuous-time, continuous-value

(c) 2 pnt Since A is Uniform(1, 2), we have

fA(a) =

{
1 1 ≤ a ≤ 2

0 otherwise
FA(a) =


0 a < 1

a− 1 1 ≤ a ≤ 2

1 a > 2
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Using this, we find

FX(t)(x) = P[X(t) < x] = P[A+ cos(2πt) < x]

= P[A < x− cos(2πt)]

=


0 x− cos(2πt) < 1

x− cos(2πt)− 1 1 ≤ x− cos(2πt) ≤ 2

1 x− cos(2πt) > 2

=


0 x < 1 + cos(2πt)

x− cos(2πt)− 1 1 + cos(2πt) ≤ x ≤ 2 + cos(2πt)

1 x > 2 + cos(2πt)

Taking the derivative, we find

fX(t)(x) =
d

dx
FX(t)(x) =

{
1 1 + cos(2πt) ≤ x ≤ 2 + cos(2πt)

0 otherwise

(d) 1 pnt No, e.g., it does not say anything on the joint PDF of two samples, fX(t1),X(t2)(x1, x2), or

the joint PDF of more than two samples.

(e) 1 pnt

µX(t) = E[X(t)] = E[A] + cos(2πt) =
3

2
+ cos(2πt)

(f) 2 pnt Since X(t)− µX(t) = A− 3
2 ,

CX(t, τ) = var(A) =
1

12

RX(t, τ) = CX(t, τ) + µX(t)µX(t+ τ) =
1

12
+

(
3

2
+ cos(2πt)

)(
3

2
+ cos(2π(t+ τ)

)
= · · ·

(g) 1 pnt Not stationary since fX(t)(x) depends on t (necessary condition not satisfied).

Not WSS since µX(t) depends on t.

Not ergodic since X(t) is not stationary (necessary condition not satisfied).

Question 4 (9 points)

Let X(t) be a WSS random process with mean µX = 2 and autocovariance function CX(τ) =

δ(τ). We filter X(t) with a lowpass filter with impulse response

h(t) =

{
e−t t ≥ 0

0 otherwise

The output is Y (t) = h(t) ∗X(t).

(a) Compute µY , the mean of the output random process.

(b) Compute the crosscorrelation function RXY (τ).
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(c) Show that the autocorrelation function RY (τ) of the output has the form

RY (τ) = a e−b|τ | + c

and determine the coefficients a, b and c.

(d) Compute the cross-power spectral density SXY (f).

(e) Compute the output power spectral density SY (f); also make a plot of SY (f) (carefully

mark the values on the axes).

(f) What is the average output power?

Now, consider that the output of the filter is also disturbed by noise: let Y (t) = h(t)∗X(t)+W (t),

where W (t) is a white Gaussian noise process, independent of X(t), with power spectral density

SW (f) = 3 W/Hz.

(g) Compute the autocorrelation RY (τ) of the output, and compute the output power spectral

density SY (f).

Solution

(a) 1 pnt

µY = µX

∫
h(t)dt = 2 ·

∫ ∞

0
e−tdt = 2

(b) 1.5 pnt RX(τ) = 4 + δ(τ). Then

RXY (τ) = h(τ) ∗RX(τ) = h(τ) ∗ (4 + δ(τ)) = 4 + h(τ)

since h(τ) ∗ 4 =
∫
4h(t− τ)dt = 4

∫
h(t− τ)dt = 4.

(c) 2 pnt

RY (τ) = h(τ) ∗ h(−τ) ∗RX(τ) = (4 + h(τ)) ∗ h(−τ)

As above, 4 ∗ h(−τ) = 4, and

h(τ) ∗ h(−τ) =

∫
h(t)h(t+ τ)dt =

∫
e−tu(t)e−(t+τ)u(t+ τ)dt

For τ > 0:

· · · =
∫ ∞

0
e−te−(t+τ)dt = e−τ

∫ ∞

0
e−2tdt =

1

2
e−τ

For τ < 0 we can do a similar calculation, or use the symmetry of RY (τ) to directly find

h(τ) ∗ h(−τ) =
1

2
e−|τ |

Altogether,

RY (τ) =
1

2
e−|τ | + 4

Alternatively (and probably easier) this can be computed in the frequency domain, using

the results of the next two subquestions.

(d) 1 pnt

SXY (f) = F{RXY (τ)} =
1

1 + j2πf
+ 4δ(f)
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(e) 1.5 pnt

SY (f) = F{RX(τ)} =
1

1 + (2πf)2
+ 4δ(f)

(Note: the delta spike should be drawn separately as an arrow, indicating it goes to infinity.

Its height is 4, not 5.)

(f) 0.5 pnt The average output power is RY (0) = 41
2 .

(g) 1.5 pnt Due to independence and the fact that the noise is zero mean, the autocorrelations of

h(t) ∗X(t) and W (t) add up. Furthermore, RW (τ) = 3δ(τ). Altogether,

RY (τ) =
1

2
e−|τ | + 4 + 3δ(τ)

Apply (as before) the Fourier transform:

SY (f) =
1

1 + (2πf)2
+ 4δ(f) + 3

Also here, the PSDs of the signal and the noise add up.

8


