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• The two-sided Laplace transform of a signal x(t ) is given by

X (s) =
∫∞

t=−∞
x(t )e−st dt , s ∈ ROCx

• The correspondence between X (s)+ROCx and x(t ) is unique

• Actually, we have already used this property without being very explicit
about it (in the previous lecture we used Laplace transform tables)

• We have an explicit expression for the Laplace transform of a signal x(t )
producing X (s) along with its ROC

• Is there an explicit expression for the inverse transform?

• In other words, given X (s) and its ROC, is there an explicit expression or
operator that produces the time-signal x(t )?

• The answer is yes

• We claim that the inverse Laplace transform is given by

x(t ) = 1

2πj

∫σ+j∞

s=σ−j∞
X (s)est ds,

where the integration contour is located in ROCx

• This contour is called the Bromwich contour

• We also write

x(t ) = 1

2πj

∫

s∈Br
X (s)est ds

with
Br = {s ∈ ROCx |s =σ+ jΩ,−∞<Ω<∞}

The Inverse Laplace Transform
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• Assuming the Laplace transform X (s) exists

• Causal signals x(t ): the Bromwich contour is located within some right-
half plane = ROCx

• Anti-causal signals x(t ): the Bromwich contour is located within some
left-half plane = ROCx

• Noncausal signals x(t ): the Bromwich contour is located within some strip
= ROCx

• Let us verify that the proposed inversion formula indeed produces the
time-domain signal x(t )

• The inversion formula is given by

1

2πj

∫

s∈Br
X (s)est ds with s ∈ ROCx

• We start by substituting the expression for the Laplace transform in this
formula

• We get

1

2πj

∫

s∈Br
X (s)est ds = 1

2πj

∫

s∈Br

∫∞

τ=−∞
x(τ)e−sτ dτest ds

• Interchanging the order of integration results in

1

2πj

∫

s∈Br
X (s)est ds = 1

2πj

∫∞

τ=−∞
x(τ)

∫σ+j∞

s=σ−j∞
es(t−τ) ds dτ

The Inverse Laplace Transform
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• Introducing a new variable of integration p = s −σ, we can write

1

2πj

∫

s∈Br
X (s)est ds = 1

2πj

∫∞

τ=−∞
x(τ)

∫j∞

p=−j∞
e(p+σ)(t−τ) dp dτ

= 1

2πj

∫∞

τ=−∞
x(τ)eσ(t−τ)

∫j∞

p=−j∞
ep(t−τ) dp dτ

• With p = jΩ (dp = jdΩ) this becomes

1

2πj

∫

s∈Br
X (s)est ds =

∫∞

τ=−∞
x(τ)eσ(t−τ)

[
1

2π

∫∞

Ω=−∞
e jΩ(t−τ) dΩ

]
dτ

• Now recall the completeness relation from Lecture 1:

δ(t ) = 1

2π

∫∞

Ω=−∞
e jΩt dΩ

• Consequently,

δ(t −τ) = 1

2π

∫∞

Ω=−∞
e jΩ(t−τ) dΩ

• Using this result, we obtain

1

2πj

∫

s∈Br
X (s)est ds =

∫∞

τ=−∞
x(τ)eσ(t−τ)δ(t −τ)dτ= x(t )

• Laplace transformation pair

• Forward transformation:

X (s) =
∫∞

t=−∞
x(t )e−st dt , s ∈ ROCx

• Inverse transformation:

x(t ) = 1

2πj

∫

s∈Br
X (s)est ds, Br ∈ ROCx
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• If the imaginary axis is contained in ROCx then we can restrict the Laplace
parameter to the imaginary axis

• Setting s = jΩ, the Laplace transformation pair becomes

• Forward transformation:

X (Ω) =
∫∞

t=−∞
x(t )e−jΩt dt

• Inverse transformation:

x(t ) = 1

2π

∫∞

Ω=−∞
X (Ω)e jΩt dΩ

• This transformation pair defines the Fourier transformation (much more
on this later)

• Warning! The Fourier transformation defined above is according to the
convention used by electrical engineers

• Physicists use the letter i for the imaginary unit and take s = −iΩ in the
Laplace transform

• The Fourier transformation pair of a physicist is

• Forward transformation:

X (Ω) =
∫∞

t=−∞
x(t )e iΩt dt

• Inverse transformation:

x(t ) = 1

2π

∫∞

Ω=−∞
X (Ω)e−iΩt dΩ

• When reading books, papers, reports, etc. check out the convention that
the author uses

The Inverse Laplace Transform
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• BIBO stability is related to the existence of the Fourier transform

• Specifically, if the system is BIBO stable then H(Ω) exists

|H(Ω)| =
∣∣∣∣
∫∞

t=−∞
h(t )e−jΩt dt

∣∣∣∣≤
∫∞

t=−∞

∣∣h(t )e−jΩt
∣∣dt ≤

∫∞

t=−∞
|h(t )|dt <∞

• The converse (existence of H(Ω) implies BIBO stability) is true under cer-
tain conditions

• More on this later (see slides 94 – 96)

• Returning to the Laplace transform, we note that any Bromwich contour
in the inverse Laplace transform does the job so long as it belongs to the
ROC

• To see this, we recall Cauchy’s theorem from complex analysis

• Loosely speaking, this theorem states that if F (s) is analytic within a re-
gion A in the complex s-plane, then for any closed curve C belonging to
A , we have ∮

s∈C
F (s)ds = 0

• For a time signal x(t ) we know that its Laplace transform X (s) is analytic
in its ROC

• The function est is also analytic in this region (as a function of s)

• Conclusion: the function F (s) = X (s)est is analytic in the ROC of the sig-
nal x(t )

• Applying Cauchy’s theorem, we have
∮

s∈C
X (s)est ds = 0

for any closed curve C belong to the ROC of the signal x(t )

The Inverse Laplace Transform
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in the inverse Laplace transform does the job so long as it belongs to the
ROC

• To see this, we recall Cauchy’s theorem from complex analysis

• Loosely speaking, this theorem states that if F (s) is analytic within a re-
gion A in the complex s-plane, then for any closed curve C belonging to
A , we have ∮

s∈C
F (s)ds = 0

• For a time signal x(t ) we know that its Laplace transform X (s) is analytic
in its ROC

• The function est is also analytic in this region (as a function of s)

• Conclusion: the function F (s) = X (s)est is analytic in the ROC of the sig-
nal x(t )

• Applying Cauchy’s theorem, we have
∮

s∈C
X (s)est ds = 0

for any closed curve C belong to the ROC of the signal x(t )
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• This result can be used to show that integration along any Bromwich con-
tour belonging to the ROC produces the time-domain signal x(t )

• We illustrate this for a causal time-signal x(t ) (the analysis for anti- or non-
causal signals is similar)

• For a causal time signal, the ROC is some right-half plane in general

• We consider two Bromwich contours Br1 and Br2 belonging to this region

• Our claim is that it does not matter along which contour you integrate to
get x(t ) back

• In other words ∫

s∈Br1

X (s)est ds =
∫

s∈Br2

X (s)est ds

with

Br1 = {s ∈C|s =σ1 + jΩ,σ1 >σc,−∞<Ω<∞}

and

Br2 = {s ∈C|s =σ2 + jΩ,σ2 >σc,−∞<Ω<∞}

σ2 >σ1

• To show this, consider the curve

CΩ = L(1)
Ω ∪Cup ∪L(2)

Ω ∪Cdown

which is completely located within the ROC of signal x(t )

• From Cauchy’s theorem it follows that
∮

s∈CΩ

X (s)est ds = 0 (∗)

or
∫

s∈L(1)
Ω

X (s)est ds+
∫

s∈Cup

X (s)est ds+
∫

s∈L(2)
Ω

X (s)est ds+
∫

s∈Cdown

X (s)est ds = 0
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• This result can be used to show that integration along any Bromwich con-
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• This result can be used to show that integration along any Bromwich con-
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• Clearly,

lim
Ω→∞

∫

s∈L(1)
Ω

X (s)est ds =
∫

s∈Br1

X (s)est ds

and

lim
Ω→∞

∫

s∈L(2)
Ω

X (s)est ds =−
∫

s∈Br2

X (s)est ds

• Furthermore, it can be shown that

lim
Ω→∞

∫

s∈Cup

X (s)est ds = 0

and

lim
Ω→∞

∫

s∈Cdown

X (s)est ds = 0

• Taking the limit Ω→∞ in Eq. (∗) and putting all limits together, we find
∫

s∈Br1

X (s)est ds −
∫

s∈Br2

X (s)est ds = 0

which is what we wanted to show

• To determine the inverse Laplace transform of some s-domain function
X (s), we continu the integrand of the inverse transform into the complex
s-plane and use techniques from complex analysis

• Although the approach that we follow can be applied to a wide class of
Laplace-domain functions X (s), we restrict ourselves to cases where X (s)
is a strictly proper rational function of the form

X (s) = pM (s)

qN (s)

with pM (s) is a polynomial in s of degree M and qN (s) is a polynomial in s
of degree N
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• Clearly,

lim
Ω→∞
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which is what we wanted to show

• To determine the inverse Laplace transform of some s-domain function
X (s), we continu the integrand of the inverse transform into the complex
s-plane and use techniques from complex analysis

• Although the approach that we follow can be applied to a wide class of
Laplace-domain functions X (s), we restrict ourselves to cases where X (s)
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X (s) = pM (s)
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• The rational function X (s) is called improper if M > N

• The rational function X (s) is called proper if M ≤ N

• The rational function X (s) is called strictly proper if M < N

• Examples

X (s) = s3 +4

s2 +1
is improper

X (s) = s

s +1
is proper

and

X (s) = s

s2 +1
is strictly proper

• Furthermore, let X (s) have

* m poles located to the left of the Bromwich contour and

* n poles located to the right of the Bromwich contour

• If x(t ) is causal then n = 0: there are no poles to the right of the Bromwich
contour, since for a causal signal X (s) is analytic to the right of the Bromwich
contour

• If x(t ) is anti-causal then m = 0: there are no poles to the left of the Bromwich
contour, since for an anti-causal signal X (s) is analytic to the left of the
Bromwich contour
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• The rational function X (s) is called improper if M > N
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• The rational function X (s) is called improper if M > N

• The rational function X (s) is called proper if M ≤ N
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• To evaluate the inversion integral, we distinguish between two cases

• Case 1: t < 0

• In this case we evaluate the integral by considering the closed curve CΩ =
LΩ∪C r

Ω shown below

• The curve CΩ is traversed clockwise and encloses all n poles of X (s) located
to the right of the Bromwich contour

• We can always achieve this by making Ω sufficiently large

• Applying the residue theorem, we find
∮

s∈CΩ

X (s)est ds =−2πj
n∑

p=1
Res

[
X (s)est , sp

]
(∗∗)

where sp is the pth pole located to the right of the Bromwich contour

• Recall that the residue of X (s)est at a pole of order k at s = sp is computed
as follows:

1. Construct the function ϕ(s) = (s − sp )k X (s)est

2. The residue of X (s)est at s = sp is given by

Res
[

X (s)est , sp
]= ϕ(k−1)(s)

(k −1)!

∣∣∣
s=sp

• The reason for considering the indicated curve CΩ is that for the Laplace-
domain functions X (s) considered here (strictly proper rational functions),
it can be shown that

lim
Ω→∞

∫

s∈C r
Ω

X (s)est ds = 0 for t < 0

• Taking the limit Ω→∞ in Eq. (∗∗) and realizing that

lim
Ω→∞

∫

s∈LΩ

X (s)est ds =
∫

s∈Br
X (s)est ds

we find that∫

s∈Br
X (s)est ds =−2πj

n∑
p=1

Res
[

X (s)est , sp
]

for t < 0
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• To evaluate the inversion integral, we distinguish between two cases

• Case 1: t < 0
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• To evaluate the inversion integral, we distinguish between two cases

• Case 1: t < 0
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LΩ∪C r

Ω shown below

• The curve CΩ is traversed clockwise and encloses all n poles of X (s) located
to the right of the Bromwich contour

• We can always achieve this by making Ω sufficiently large

• Applying the residue theorem, we find
∮

s∈CΩ

X (s)est ds =−2πj
n∑

p=1
Res

[
X (s)est , sp

]
(∗∗)

where sp is the pth pole located to the right of the Bromwich contour

• Recall that the residue of X (s)est at a pole of order k at s = sp is computed
as follows:

1. Construct the function ϕ(s) = (s − sp )k X (s)est

2. The residue of X (s)est at s = sp is given by

Res
[

X (s)est , sp
]= ϕ(k−1)(s)

(k −1)!

∣∣∣
s=sp

• The reason for considering the indicated curve CΩ is that for the Laplace-
domain functions X (s) considered here (strictly proper rational functions),
it can be shown that

lim
Ω→∞

∫

s∈C r
Ω

X (s)est ds = 0 for t < 0

• Taking the limit Ω→∞ in Eq. (∗∗) and realizing that

lim
Ω→∞

∫

s∈LΩ

X (s)est ds =
∫

s∈Br
X (s)est ds

we find that∫

s∈Br
X (s)est ds =−2πj

n∑
p=1

Res
[

X (s)est , sp
]

for t < 0



The Inverse Laplace Transform

41

• To evaluate the inversion integral, we distinguish between two cases

• Case 1: t < 0

• In this case we evaluate the integral by considering the closed curve CΩ =
LΩ∪C r

Ω shown below

• The curve CΩ is traversed clockwise and encloses all n poles of X (s) located
to the right of the Bromwich contour

• We can always achieve this by making Ω sufficiently large

• Applying the residue theorem, we find
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∣∣∣
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• The reason for considering the indicated curve CΩ is that for the Laplace-
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it can be shown that

lim
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• Consequently,

x(t ) =−
n∑

p=1
Res

[
X (s)est , sp

]
for t < 0

where the sp are the distinct poles of X (s) located to the right of the Bromwich
contour

• For a causal signal, X (s) has no poles to the right of the Bromwich contour
and the inversion formula gives

x(t ) = 0 for t < 0

as it should be, of course

• Case 2: t > 0

• In this case we evaluate the integral by considering the closed curve CΩ =
LΩ∪C l

Ω shown below

• The curve CΩ is traversed counterclockwise and encloses all m poles of
X (s) located to the left of the Bromwich contour

• We can always achieve this by making Ω sufficiently large

• Applying the residue theorem, we find

∮

s∈CΩ

X (s)est ds = 2πj
m∑

p=1
Res

[
X (s)est , sp

]
(∗∗∗)

where sp is the pth pole located to the left of the Bromwich contour

• The reason for considering the indicated curve CΩ is that for the Laplace-
domain functions X (s) consider here (strictly proper rational functions),
it can be shown that

lim
Ω→∞

∫

s∈C l
Ω

X (s)est ds = 0 for t > 0
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x(t ) = 0 for t < 0

as it should be, of course

• Case 2: t > 0

• In this case we evaluate the integral by considering the closed curve CΩ =
LΩ∪C l

Ω shown below

• The curve CΩ is traversed counterclockwise and encloses all m poles of
X (s) located to the left of the Bromwich contour

• We can always achieve this by making Ω sufficiently large

• Applying the residue theorem, we find

∮

s∈CΩ

X (s)est ds = 2πj
m∑

p=1
Res

[
X (s)est , sp

]
(∗∗∗)

where sp is the pth pole located to the left of the Bromwich contour

• The reason for considering the indicated curve CΩ is that for the Laplace-
domain functions X (s) consider here (strictly proper rational functions),
it can be shown that

lim
Ω→∞

∫

s∈C l
Ω

X (s)est ds = 0 for t > 0
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• Taking the limit Ω→∞ in Eq. (∗∗∗) and realizing that

lim
Ω→∞

∫

s∈LΩ

X (s)est ds =
∫

s∈Br
X (s)est ds

we find that
∫

s∈Br
X (s)est ds = 2πj

m∑
p=1

Res
[

X (s)est , sp
]

for t > 0

• Consequently,

x(t ) =
m∑

p=1
Res

[
X (s)est , sp

]
for t > 0

where the sp are the distinct poles of X (s) located to the left of the Bromwich
contour

• For an anti-causal signal, X (s) has no poles to the left of the Bromwich
contour and the inversion formula gives

x(t ) = 0 for t > 0

as it should be, of course

• Example 1 Let X (s) = 1/s be the Laplace transform of a time signal x(t )
with the half-plane Re(s) > 0 as its ROC

• We already know what the time-function is, of course, but let’s compute it
using residue calculus

• X (s) has a simple pole at s = 0 and is analytic on its ROC

• The Bromwich contour must be located within the ROC
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• Since there are no poles to the right of the Bromwich contour, we find
x(t ) = 0 for t < 0

• The simple pole at s = 0 is located to the left of the Bromwich contour
outside the ROC, of course

• Computing its residue, we find

ϕ(s) = sX (s)est = est and Res
[est

s
,0

]= ϕ(s)

0!

∣∣∣
s=0

= 1

1
= 1

• and the time signal is
x(t ) = 1 for t > 0

• Conclusion: x(t ) = u(t )

• What happens at t = 0?

• Using the inversion formula, we find

x(0) = 1

2πj

∫

s∈Br

1

s
ds = lim

Ω1→∞
Ω2→∞

∫σ+jΩ2

σ−jΩ1

1

s
ds

• By changing the ratio Ω1/Ω2 we can give the integral any value that we
want

• Setting Ω1/Ω2 = 1 (as is usual), the resulting integral is known as a Cauchy
principal value integral

• With this choice, we have

x(0) = 1

2πj
−
∫

s∈Br

1

s
ds = 1

2πj
lim
Ω→∞

[
ln |s|+ jarg(s)

]σ+jΩ

s=σ−jΩ

= 1

2πj
·2j · lim

Ω→∞
arctan

(
Ω

σ

)

= 1

2πj
·2j · π

2
= 1

2
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• For this reason, the Heaviside unit step function is often defined as

u(t ) =





0 for t < 0
1
2 for t = 0

1 for t > 0

• The above result can be generalized to a general discontinuous signals

• We have

x(t +0)+x(t −0)

2
= 1

2πj
−
∫

s∈Br
X (s)est ds

• Example 2 Again X (s) = 1/s, but this time the ROC is {s ∈C|Re(s) < 0}

• The ROC is now a left-half plane

• The Bromwich contour is located inside the ROC

• There are no poles to the left of the Bromwich contour

• Consequently,
x(t ) = 0 for t > 0

• The simple pole at s = 0 is now located to the right of the Bromwich con-
tour and contributes for t < 0

• Using the residue formula for t < 0, we find

x(t ) =−1 for t < 0

Don’t forget the minus sign!

• In total: x(t ) =−u(−t )

• Example 3 Suppose X (s) = 1/s2 with Re(s) > 0 as its ROC

• What is the corresponding time signal?

• The Bromwich contour must be located within the ROC

• There are no poles to the right of the Bromwich contour

• Consequently,
x(t ) = 0 for t < 0
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• For t > 0 we encounter a pole of order 2 at the origin

• We compute its residue

• First, construct ϕ(s):
ϕ(s) = s2X (s)est = est

• The residue at s = 0 is given by

Res
[

X (s)est ,0
]= ϕ(1)(s)

1!

∣∣∣
s=0

• Computing the derivative gives

ϕ(1)(s) = d

ds
est = test

• and the residue is found as

Res
[

X (s)est ,0
]= test

1!

∣∣∣
s=0

= t

• Substitution in the residue formula for t > 0 gives

x(t ) = t for t > 0

• Conclusion: x(t ) = r (t )

• Example 4 Suppose

X (s) = 2

1− s2

with an ROC given by ROCx = {s ∈C| |Re(s)| < 1}

• What is the corresponding time signal x(t )?

• As always, the Bromwich contour is located within the ROC
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• X (s) has two simple poles: one at s =−1 and one at s =+1

• The pole at s = 1 is located to the right of the Bromwich contour and con-
tributes for t < 0

• The pole at s =−1 is located to the left of the Bromwich contour and con-
tributes for t > 0

• To compute the time-domain signal for t < 0, we compute the residue at
s = 1

• First, determine the ϕ-function

ϕ(s) = (s −1)X (s)est =−2
est

s +1

• The residue of X (s)est at s = 1 now follows as

Res
[

X (s)est ,1
]= ϕ(s)

0!

∣∣∣
s=1

=−et

• Substitution in the residue formula for t < 0 gives x(t ) = et for t < 0

• To determine the time-domain signal for t > 0, we compute the residue at
s =−1

• First, the ϕ-function

ϕ(s) = (s +1)X (s)est =−2
est

s −1

• The residue of X (s)est at s =−1 is

Res
[

X (s)est ,−1
]= ϕ(s)

0!

∣∣∣
s=−1

= e−t

• Substitution in the residue formula for t > 0 gives x(t ) = e−t for t > 0
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• To evaluate the inversion formula, we have restricted ourselves to strictly
proper rational functions

• However, contour integration techniques can be applied to a much wider
class of functions

• For example, suppose that the transfer function of a causal LTI system is
given by

H(s) = 1�
s

with ROCh = {s ∈C|Re(s) > 0}

• Using contour integration, it is possible to show that the corresponding
impulse response is

h(t ) = 1�
πt

u(t )

• We will not consider such signals in this course (H(s) is not a rational func-
tion)

• As an aside: Is this LTI system BIBO stable?

• In our analysis, we have restricted ourselves to strictly proper rational Laplace
domain functions

H(s) = pM (s)

qN (s)

• pM (s) is a polynomial of degree M

• qN (s) is a polynomial of degree N

• M < N
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• To evaluate the inversion formula, we have restricted ourselves to strictly
proper rational functions

• However, contour integration techniques can be applied to a much wider
class of functions

• For example, suppose that the transfer function of a causal LTI system is
given by
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impulse response is

h(t ) = 1�
πt

u(t )

• We will not consider such signals in this course (H(s) is not a rational func-
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domain functions

H(s) = pM (s)
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• pM (s) is a polynomial of degree M

• qN (s) is a polynomial of degree N
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• To explain why this covers many cases of practical interest, we return to
the ordinary differential equation

(
aN

dN

dt N
+aN−1

dN−1

dt N−1
+ ...+a1

d

dt
+a0

)
y(t ) =

(
bM

dM

dt M
+bM−1

dM−1

dt M−1
+ ...+b1

d

dt
+b0

)
x(t )

which holds for t > 0− and has to be supplemented by a set of initial con-
ditions (see Lecture 2)

• We note that the coefficients ai and b j are all real-valued

• For vanishing initial conditions, the solution of the above equation is called
the zero-state response

• For vanishing initial conditions, the system that is described by the differ-
ential equation is LTI

• Applying a one-sided Laplace transformation to the differential equation
and taking the vanishing initial conditions into account, we find

(
aN sN+aN−1sN−1+...+a1s+a0

)
Y (s) =

(
bM sM+bM−1sN−1+...+b1s+b0

)
X (s)

• or
qN (s)Y (s) = pM (s)X (s)

• with

pM (s) = bM sM +bM−1sN−1 + ...+b1s +b0

and

qN (s) = aN sN +aN−1sN−1 + ...+a1s +a0
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• To explain why this covers many cases of practical interest, we return to
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• To explain why this covers many cases of practical interest, we return to
the ordinary differential equation

(
aN

dN

dt N
+aN−1

dN−1

dt N−1
+ ...+a1

d

dt
+a0

)
y(t ) =

(
bM

dM

dt M
+bM−1

dM−1

dt M−1
+ ...+b1

d

dt
+b0

)
x(t )

which holds for t > 0− and has to be supplemented by a set of initial con-
ditions (see Lecture 2)

• We note that the coefficients ai and b j are all real-valued

• For vanishing initial conditions, the solution of the above equation is called
the zero-state response

• For vanishing initial conditions, the system that is described by the differ-
ential equation is LTI

• Applying a one-sided Laplace transformation to the differential equation
and taking the vanishing initial conditions into account, we find

(
aN sN+aN−1sN−1+...+a1s+a0

)
Y (s) =

(
bM sM+bM−1sN−1+...+b1s+b0

)
X (s)

• or
qN (s)Y (s) = pM (s)X (s)

• with

pM (s) = bM sM +bM−1sN−1 + ...+b1s +b0

and

qN (s) = aN sN +aN−1sN−1 + ...+a1s +a0



The Inverse Laplace Transform

73
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• The transfer function of the LTI system is

H(s) = Y (s)

X (s)
= pM (s)

qN (s)
,

which is a rational function in s

• We repeat

* For M > N the transfer function is an improper rational function

* For M ≤ N the transfer function is a proper rational function

* For M < N the transfer function is a strictly proper rational function

• Now it can be shown that if H is proper or improper then it can always be
written as

H(s) = RM−N (s)+ S(s)

T (s)

• RM−N (s) is a polynomial in s of degree M −N

• S and T are polynomials such that the rational function S/T is strictly
proper

• Example 1

H(s) = s

s +1
is a proper rational function, which can be written as

H(s) = 1− 1

s +1

• In this example, R0(s) = 1 and −1/(s +1) is strictly proper

• Example 2

H(s) = s3

s +4
is an improper rational function, which can be written as

H(s) = s2 −4s +16− 64

s +4

• In this example, R2(s) = s2 −4s +16 and −64/(s +4) is strictly proper
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• The transfer function of the LTI system is
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• The transfer function of the LTI system is
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• The transfer function of the LTI system is
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• Time-domain signals can now be obtained using residue calculus and by
identifying powers of s with derivatives in time (constants transform into
Dirac distributions)

• Another approach is to expand strictly proper rational functions in partial
fractions such that we can use the known transforms of standard signals
to retrieve the corresponding time signals

• How to expand depends on the roots of the denominator polynomial

• We illustrate for a denominator polynomial that is quadratic

• Two distinct roots (possibly complex)

• Suppose H(s) is a strictly proper transfer function

H(s) = N (s)

(s +p1)(s +p2)
, s ∈ ROCh , p1 �= p2

• N (s) is a polynomial of degree ≤ 1 with real coefficients

• The partial fraction expansion of H is

H(s) = A1

s +p1
+ A2

s +p2

• To find A1 and A2, multiply H(s) by (s +p1)(s +p2). This gives

N (s) = A1(s +p2)+ A2(s +p1)

• Setting s =−p1, we obtain

A1 = N (−p1)

p2 −p1

• Setting s =−p2, we obtain

A2 = N (−p2)

p1 −p2



The Inverse Laplace Transform

80

• Time-domain signals can now be obtained using residue calculus and by
identifying powers of s with derivatives in time (constants transform into
Dirac distributions)
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• Time-domain signals can now be obtained using residue calculus and by
identifying powers of s with derivatives in time (constants transform into
Dirac distributions)
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• Time-domain signals can now be obtained using residue calculus and by
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• If p1 and p2 are real, the time-domain signal is

h(t ) = (
A1e−p1t + A2e−p2t )u(t )

• Example Suppose

H(s) = 1

(s +1)(s +4)
= A1

s +1
+ A2

s +4

• Here, N (s) = 1, p1 = 1, and p2 = 4

• We find A1 = 1/(4−1) = 1/3 and A2 = 1/(1−4) =−1/3, and

H(s) = 1

3

(
1

s +1
− 1

s +4

)

• The impulse response is

h(t ) = 1

3

(
e−t −e−4t )u(t )

• If p1 and p2 are complex, then they have to be the complex conjugate of
each other, since the coefficients of the denominator polynomial are real-
valued

• We write
p1 = a − jΩ0 = p∗

2 a,Ω0 ∈R,

where the asterisk denotes complex conjugation

• Recall that the coefficients of the nominator polynomial N (s) are also real-
valued

• Consequently, N∗(s) = N (s∗) and

A∗
2 = N∗(−p2)

p∗
1 −p∗

2

= N (−p∗
2 )

p2 −p1
= N (−p1)

p2 −p1
= A1

• With A1 = A = A∗
2 , our partial fraction expansion becomes

N (s)

(s +a)2 +Ω2
0

= N (s)

(s +a − jΩ0︸ ︷︷ ︸
p1

)(s +a + jΩ0︸ ︷︷ ︸
p2

)
= A

s +a − jΩ0
+ A∗

s +a + jΩ0
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• If p1 and p2 are real, the time-domain signal is
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• The corresponding time signal is

h(t ) = Ae−at e jΩ0t u(t )+ A∗e−at e−jΩ0t u(t ) = 2e−at Re
(

Ae jΩ0t )u(t )

• Cartesian decomposition of the complex number A:

A = Ar + jAi, Ar = Re(A), Ai = Im(A)

• The time signal is

h(t ) = 2e−at [Ar cos(Ω0t )− Ai sin(Ω0t )
]
u(t )

• Polar decomposition of the complex number A:

A = |A|e jθ

• The time signal is

h(t ) = 2|A|e−at cos(Ω0t +θ)u(t )

• Both expression describe the same signal, of course

• Coinciding real roots

• Suppose that the Laplace domain function is of the form

H(s) = N (s)

(s +α)2

• In this case, H has a double real root at s =−α

• Its partial fraction expansion is

H(s) = N (s)

(s +α)2 = a

(s +α)2 + b

s +α

• To find a and b, we multiply by (s +α)2
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• We obtain
N (s) = a +b(s +α)

• Setting s =−α, we find a = N (−α)

• Substitution now gives

N (s)−N (−α) = b(s +α)

• Selecting a value for s �= −α gives b

• For example, if α �= 0 we can take s = 0 and b follows as

b = N (0)−N (−α)

α

• The corresponding time signal is

h(t ) = (a te−αt +be−αt )u(t )

• Example Let

H(s) = 4

s(s +2)2

• Its partial fraction expansion is

H(s) = 4

s(s +2)2 = A

s
+ B

(s +2)2 + C

s +2

• Multiplication by s(s +2)2 gives

4 = (A+C )s2 + (4A+B +2C )s +4A

• Equating equal powers of s gives

A+C = 0

4A+B +2C = 0

4A = 4

from which it follows that A = 1, B =−2, and C =−1
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• We are given a causal LTI system with a rational transfer function H(s) and
ROCx as its region of convergence

• Also given is that the Fourier transform H(Ω) exists

• The system is then BIBO stable

• The existence of the Fourier transform implies BIBO stability for such a
system

• Let’s analyze

• The ROC of a causal system is some right-half plane

• The jΩ-axis belongs to the ROC, since H(Ω) exists

• This implies that all poles of H(s) are located in the left-half of the complex
s-plane

• The time signals that correspond to these poles are all exponentially de-
caying as time increases

• Consequently, h(t ) is absolutely integrable and the system is BIBO stable
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• Let y(t ) be the output signal of a causal LTI system due to a causal input
signal

• The output signal is made up of a transient response and a steady-state
response

• Transient response: signal due to the inertia of the system

• Steady-state response: signal that remains if you wait for a “sufficiently
long" time (after all transients have essentially vanished)

• By studying the poles of the Laplace transform of y(t ), we can conclude
whether or not such a steady-state response exists

• Observations (use a Laplace transform table, if necessary):

1. A pole in the right-half of the complex s-plane corresponds to a time
signal that grows exponentially in time (irrespective of the order of
the pole)

2. A pole in the left-half of the complex s-plane corresponds to a time
signal that exponentially decays to zero (irrespective of the order of
the pole)

3. A pole on the imaginary axis with an order larger than one corre-
sponds to a time signal that shows polynomial growth in time

4. A simple pole on the imaginary axis corresponds to a signal that re-
mains bounded in time

• Given these observations, we conclude that a steady-state response exists
if

• Y (s) has no poles in the right-half of the complex s-plane and no poles
with an order larger than one on the imaginary axis

• If all poles of Y (s) are in the left-half of the complex s-plane then the
steady-state response vanishes
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Rigoreous proofs of the many properties of the Laplace transform (Abel’s the-
orem, for example), the existence of the abscissa of convergence, etc. can be 
found in

P. Henrici, Applied and Computational Analysis, Vol. 2, Wiley Classics Library, 
New York, 1991

J. E. Marsden and M. J. Hoffman, Basic Complex Analysis, 2nd Ed., W. H. 
Freeman and Company, New York, 1987 

W. R. LePage, Complex Variables and the Laplace Transform for Engineers, Do-
ver Inc., New York, 1980.


