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• The Laplace Transform

• The Two-Sided Laplace Transform

• Properties of the Two-Sided Laplace Transform

• The One-Sided Laplace Transform

• Properties of the One-Sided Laplace Transform

• Given an LTI system with a single input and a single output

• Input signal: x(t )

• Output signal: y(t )

• We have seen that the output signal is given by the convolution of the in-
put signal x(t ) and the impulse response h(t ):

y(t ) =
∫∞

τ=−∞
x(τ)h(t −τ)dτ=

∫∞

τ=−∞
x(t −τ)h(τ)dτ

• Let the input signal be given by

x(t ) = est with s ∈C

• The corresponding output signal is

y(t ) =
∫∞

τ=−∞
es(t−τ)h(τ)dτ=

∫∞

τ=−∞
h(τ)e−sτ dτest = H(s)x(t )

with

H(s) =
∫∞

τ=−∞
h(τ)e−sτ dτ

• We observe that the output signal is a multiple of the input signal (pro-
vided the integral converges, of course): y(t ) = H(s)est

S︸︷︷︸
A

{
est
︸︷︷︸

u

}= H(s)︸ ︷︷ ︸
λ

est
︸︷︷︸

u

Compare this with a standard eigenvalue problem in linear algebra:

Au =λu

• H(s) is an eigenvalue of the LTI system corresponding to the eigenfunction
x(t ) = est

The Laplace Transform
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• The expression for H(s) is precisely the definition of the two-sided Laplace
transform of h(t )

• Two-sided Laplace transform of a signal x(t ):

X (s) =
∫∞

t=−∞
x(t )e−st dt

defined, of course, for those s ∈C for which the integral converges

• To investigate under what condition(s) convergence takes place, we con-
sider

* the Laplace transform of causal signals: x(t ) = 0 for t < 0

* the Laplace transform of anti-causal signals: x(t ) = 0 for t > 0

* the Laplace transform of noncausal signals

• A causal signal x(t ) is said to be of exponential order if there exists con-
stants A and α such that

|x(t )| ≤ Aeαt for t ≥ 0

• It can be shown that for causal signals of exponential order there exists a
unique number −∞≤σc <∞ such that the Laplace integral converges for
Re(s) >σc

• The number σc is called the abscissa of convergence

• The set
{

s ∈C;Re(s) >σc
}

is called the Region of Convergence (ROC)

• To avoid confusion, we sometimes write ROCx to indicate the ROC of the
Laplace transform of a signal x(t )

• Note that the ROC of a causal signal (of exponential order) is a right-half
plane (unless σc =−∞, of course)

• It can also be shown that X (s) is analytic on its ROC

The Laplace Transform
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• Example 1: The two-sided Laplace transform of the Heaviside unit step
function u(t )

U (s) =
∫∞

t=−∞
u(t )e−st dt =

∫∞

t=0
e−st dt = 1

s
for Re(s) > 0

• In this case ROC = {
s ∈C;Re(s) > 0

}

• Example 2: The two-sided Laplace transform of a scaled rectangular pulse
function x(t ) = p

( t
T

)
, T > 0

X (s) =
∫∞

t=−∞
x(t )e−st dt =

∫T

t=0
e−st dt = 1

s

(
1−e−sT )

, s ∈C

• Note that there is no pole at s = 0

• In this case ROC =C

• An anti-causal signal x(t ) is said to be of exponential order if there exists
constants B and β such that

|x(t )| ≤ Beβt for t ≤ 0

• For anti-causal signals of exponential order it can be shown that there ex-
ists a number −∞< σac ≤∞ such that the Laplace integral converges for
Re(s) <σac

• The number σac is again called the abscissa of convergence and the ROC
is a left-half plane (unless σac =∞)

• The Laplace transform is analytic on the ROC

• Example. The two-sided Laplace transform of x(t ) = u(−t )

X (s) =
∫∞

t=−∞
x(t )e−st dt =

∫0

t=−∞
e−st dt =−1

s
for Re(s) < 0

• For this signal the ROC = {
s ∈C;Re(s) < 0

}

The Laplace Transform
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• Specifying the ROC is important!

• For example, X (s) = 1/s can be

* the Laplace transform of the causal signal x(t ) = u(t ), or

* the Laplace transform of the anti-causal signal x(t ) =−u(−t )

• Which one is intended becomes clear by specifying the ROC

• Finally, what about noncausal signals?

• For such a signal we write

x(t ) = x(t ) ·1 = x(t )
[
u(t )+u(−t )

]= xc(t )+xac(t )

with
xc(t ) = x(t )u(t ) and xac(t ) = x(t )u(−t )

• The Laplace transform of xc(t ) is Xc(s) with a region of convergence given
by ROCxc

• The Laplace transform of xac(t ) is Xac(s) with a region of convergence
given by ROCxac

• The Laplace transform of the noncausal signal x(t ) is given by X (s) = Xc(s)+
Xac(s) with a region of convergence given by ROCx = ROCxc ∩ROCxac

• The two-sided Laplace transform of x(t ) does not exist if ROCx =�
• If the two-sided Laplace transform exists then in general its ROC is a strip

in the complex s-plane

• Example 1: The two-sided Laplace transform of the noncausal signal x(t ) =
e−|t | is

X (s) =− 2

s2 −1
with −1 < Re(s) < 1

• Example 2: The two-sided Laplace transform of the noncausal signal x(t ) =
eat with a ∈C does not exist

The Laplace Transform
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• The two-sided Laplace transform of the Dirac distribution is
∫∞

t=−∞
δ(t )e−st dt = 1, s ∈C

• The two-sided Laplace transform of the derivative of the Dirac distribu-
tion is ∫∞

t=−∞
δ′(t )e−st dt

• Recall that
f (t )δ′(t ) =− f ′(0)δ(t )+ f (0)δ′(t )

• Using the above equation with f (t ) = e−st gives

e−stδ′(t ) = sδ(t )+δ′(t )

• and substitution results in∫∞

t=−∞
δ′(t )e−st dt = s, s ∈C

since ∫∞

t=−∞
δ(t )dt = 1 and

∫∞

t=−∞
δ′(t )dt = 0

Two-Sided Laplace Transforms

Time signal Two-sided Laplace transform ROC parameters

eat u(t ) 1
s −a Re(s) > Re(a) a ∈C

−eat u(−t ) 1
s −a Re(s) < Re(a) a ∈C

t k−1eat

(k −1)! u(t ) 1
(s −a)k Re(s) > Re(a) a ∈C, k ∈N

− t k−1eat

(k −1)! u(−t ) 1
(s −a)k Re(s) < Re(a) a ∈C, k ∈N

eat cos(Ω0t )u(t ) s −a
(s −a)2 +Ω2

0
Re(s) > a a,Ω0 ∈R

eat sin(Ω0t )u(t ) Ω0

(s −a)2 +Ω2
0

Re(s) > a a,Ω0 ∈R

δ(t ) 1 C –

δ′(t ) s C –

The Laplace Transform
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tion is ∫∞

t=−∞
δ′(t )e−st dt

• Recall that
f (t )δ′(t ) =− f ′(0)δ(t )+ f (0)δ′(t )

• Using the above equation with f (t ) = e−st gives

e−stδ′(t ) = sδ(t )+δ′(t )

• and substitution results in∫∞

t=−∞
δ′(t )e−st dt = s, s ∈C

since ∫∞

t=−∞
δ(t )dt = 1 and

∫∞

t=−∞
δ′(t )dt = 0

Two-Sided Laplace Transforms

Time signal Two-sided Laplace transform ROC parameters

eat u(t ) 1
s −a Re(s) > Re(a) a ∈C

−eat u(−t ) 1
s −a Re(s) < Re(a) a ∈C

t k−1eat

(k −1)! u(t ) 1
(s −a)k Re(s) > Re(a) a ∈C, k ∈N

− t k−1eat

(k −1)! u(−t ) 1
(s −a)k Re(s) < Re(a) a ∈C, k ∈N

eat cos(Ω0t )u(t ) s −a
(s −a)2 +Ω2

0
Re(s) > a a,Ω0 ∈R

eat sin(Ω0t )u(t ) Ω0

(s −a)2 +Ω2
0

Re(s) > a a,Ω0 ∈R

δ(t ) 1 C –

δ′(t ) s C –
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• Note that the Laplace transforms of the signals in the above table are ra-
tional functions

X (s) = some polynomials in s

some other polynomial in s

• Convolution Let y(t ) = x(t )∗h(t )

• X (s) is the two-sided Laplace transform of x(t ) with a region of conver-
gence ROCx

• H(s) is the two-sided Laplace transform of h(t ) with a region of conver-
gence ROCh

• The Laplace transform of y(t ) is

Y (s) = X (s)H(s) with ROCy = ROCx ∩ROCh

• A convolution product in the time-domain is transformed into an ordi-
nary product in the s-domain!

• Let’s verify this statement

• We start with the definition of the two-sided Laplace transform

Y (s) =
∫∞

t=−∞
y(t )e−st dt

• Substitution of the convolution integral gives

Y (s) =
∫∞

t=−∞

∫∞

τ=−∞
x(τ)h(t −τ)dτe−st dt
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• Interchanging the order of integration, we get

Y (s) =
∫∞

τ=−∞
x(τ)

∫∞

t=−∞
h(t −τ)e−st dt dτ

p=t−τ=
∫∞

τ=−∞
x(τ)

∫∞

p=−∞
h(p)e−s(p+τ) dp dτ

=
∫∞

τ=−∞
x(τ)e−sτ dτ

∫∞

p=−∞
h(p)e−sp dp

= X (s)H(s)

with s ∈ ROCx ∩ROCh

• Given an LTI system with input signal x(t ) and output signal y(t )

• Let h(t ) denote the impulse response of this system

• Output signal:

y(t ) =
∫∞

τ=−∞
h(τ)x(t −τ)dτ

• In the Laplace- or s-domain:

Y (s) = H(s)X (s) with s ∈ ROCx ∩ROCh

• H(s) is called the transfer function of the system

• Example Let x(t ) = u(t ) and h(t ) = e−t u(t ). We are interested in the con-
volution product y(t ) = x(t )∗h(t )

• Computing this product directly, we find

y(t ) =
{

0 for t < 0∫t
τ=0 h(t −τ)dτ= 1−e−t for t > 0

• The two-sided Laplace transform of x(t ) is given by

X (s) = 1

s
, Re(s) > 0
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• Interchanging the order of integration, we get
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• The two-sided Laplace transform of h(t ) is given by

H(s) = 1

s +1
, Re(s) >−1

• The two-sided Laplace transform of y(t ) is given by

Y (s) = X (s)H(s) = 1

s(s +1)
, Re(s) > 0

• What time signal corresponds this Laplace domain function?

• Observe that

Y (s) = 1

s
− 1

s +1
, Re(s) > 0

• Using the table, we find y(t ) = (1−e−t )u(t ) or

y(t ) =
{

0 for t < 0

1−e−t for t > 0

• Much more on the inverse Laplace transform in the next lecture

• Differentiation in the Laplace-domain

• Let X (s) be the two-sided Laplace transform of a signal x(t ) with a region
of convergence given by ROCx

• We have stated that X (s) is analytic on ROCx

• The Laplace transform can therefore be differentiated

• We have
dX (s)

ds
= d

ds

∫∞

t=−∞
x(t )e−st dt , s ∈ ROCx

• Interchanging the order of differentiation and integration, we find

dX (s)

ds
=

∫∞

t=−∞

[− t x(t )
]
e−st dt , s ∈ ROCx
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• The expression on the right is the Laplace transform of −t x(t )

• We conclude that

−t x(t ) transforms into
dX (s)

ds
s ∈ ROCx

• Differentiation in the Laplace-domain corresponds to multiplication by
−t in the time-domain

• Differentiation in the time-domain

• Suppose we are given a time-domain signal x(t ) with a two-sided Laplace
transform X (s), s ∈ ROCx

• What is the Laplace transform of

y(t ) = dx(t )

dt
?

• By definition, we have

Y (s) =
∫∞

t=−∞
dx(t )

dt
e−st dt

= lim
T→∞

x(t )e−st
∣∣∣T

t=−T
−

∫∞

t=−∞
x(t )

(− se−st )dt

= s
∫∞

t=−∞
x(t )e−st dt

= sX (s), with s ∈ ROCx

• The first term on the right-hand side on the second line (blue formula)
vanishes because we assumed that X (s) exists

• We have found that

dx(t )

dt
transforms into sX (s) s ∈ ROCx
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• The expression on the right is the Laplace transform of −t x(t )
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• Differentiation in the time-domain transforms into multiplication by s in
the Laplace domain!

• Integration in the time-domain

• Suppose that we are again given a time-domain signal x(t ) with a two-
sided Laplace transform X (s), s ∈ ROCx

• What is the Laplace transform of

y(t ) =
∫t

τ=−∞
x(τ)dτ?

• Observe that y is the convolution of x and the Heaviside unit step func-
tion u:

y(t ) =
∫∞

τ=−∞
x(τ)u(t −τ)dτ

• Using the convolution property, we find

Y (s) = X (s) · 1

s
, s ∈ ROCx ∩ROCu

• If ROCx ∩ROCu =� then the Laplace transform of y(t ) does not exist

• Since ROCu = {s ∈C;Re(s) > 0}, we can also write

Y (s) = 1

s
X (s), s ∈ {

ROCx |Re(s) > 0
}

• We have found that

∫t

τ=−∞
x(τ)dτ transforms into

1

s
X (s) s ∈ {

ROCx |Re(s) > 0
}

• Integration in the time-domain transforms in to division by s in the Laplace
domain!
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• Differentiation in the time-domain transforms into multiplication by s in
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• Shift in the time-domain

• Again we have a signal x(t ) with a two-sided Laplace transform X (s), s ∈
ROCx

• Let y(t ) be a shifted version of x(t ) with time shift τ ∈R:

y(t ) = x(t +τ), τ ∈R

• What is the Laplace transform of y(t )?

• We compute

Y (s) =
∫∞

t=−∞
x(t +τ)e−st dt

p=t+τ=
∫∞

p=−∞
x(p)e−s(p−τ) dp

= esτ
∫∞

p=−∞
x(p)e−sp dp

= esτX (s), s ∈ ROCx

• We have found that

x(t +τ) transforms into esτX (s), s ∈ ROCx

• Example. Suppose the two-sided Laplace transform of a signal h(t ) is
given by

H(s) = 1

1−e−sT
with T > 0 and ROCh = {s ∈C;Re(s) > 0}

• What is h(t )?

• Set z = e−sT . We then have

1

1−e−sT
= 1

1− z
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• Shift in the time-domain
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• Now recall the power series

1

1− z
= 1+ z + z2 + ... for |z| < 1 and z ∈C

• In our case, we have with s =σ+ jΩ:

|z| = ∣∣e−sT
∣∣= ∣∣e−σT−jΩT

∣∣= ∣∣e−σT
∣∣ · ∣∣e−jΩT

∣∣= e−σT , since
∣∣e−jΩT

∣∣= 1

• We also have Re(s) =σ> 0 and T > 0. Consequently,

|z| = e−σT < 1

and
1

1−e−sT
= 1+e−sT +e−2sT + ...

• Using the Laplace transform of the Dirac distribution and the shifting prop-
erty, we find

h(t ) = δ(t )+δ(t −T )+δ(t −2T )+ ...

• Suppose x(t ) is a causal signal with support (0,Tx )

• For example, x(t ) =Λ(t ), support (0,2)

• The Laplace transform of x(t ) is X (s), s ∈C

• Given now an LTI system with a transfer function

H(s) = 1

1−e−sT
with T > Tx and Re(s) > 0

• The Laplace transform of the output signal is

Y (s) = X (s)

1−e−sT
, Re(s) > 0
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• The corresponding output signal is given by the convolution integral

y(t ) =
∫∞

τ=−∞
h(τ)x(t −τ)dτ

with

h(t ) = δ(t )+δ(t −T )+δ(t −2T )+ ... =
∞∑

k=0
δ(t −kT )

• Substitution gives

y(t ) =
∫∞

τ=−∞
h(τ)x(t −τ)dτ=

∫∞

τ=−∞

∞∑
k=0

δ(τ−kT ) x(t −τ)dτ

=
∞∑

k=0

∫∞

τ=−∞
δ(τ−kT )x(t −τ)dτ=

∞∑
k=0

x(t −kT )

= x(t )+x(t −T )+x(t −2T )+ ...

• We have constructed a periodic extension of x(t ) for t > 0

• Shift in the Laplace domain

• Let X (s) be the two-sided Laplace transform of x(t ) with s ∈ ROCx

• Is there a time-domain signal that corresponds to X (s − a) with s − a ∈
ROCx ?

• We use the definition of the Laplace transform

X (s −a) =
∫∞

t=−∞
x(t )e−(s−a)t dt =

∫∞

t=−∞
eat x(t )e−st dt

• The answer is yes

eat x(t ) transforms into X (s −a), s −a ∈ ROCx
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• Scaling

• Let x(t ) have a two-sided Laplace transform X (s) with s ∈ ROCx

• Given a nonzero real number a, what is the Laplace transform of

y(t ) = x(at )?

• We use the definition of the Laplace transform

• For a > 0, we find

Y (s) =
∫∞

t=−∞
y(t )e−st dt =

∫∞

t=−∞
x(at )e−st dt

τ=at= 1

a

∫∞

τ=−∞
x(τ)e−(s/a)τ dτ

= 1

a
X

( s

a

)
, s/a ∈ ROCx

• Similarly, for a < 0 we obtain

Y (s) =− 1

a
X

( s

a

)
s/a ∈ ROCx

• Combining both results, we have

x(at ) transforms into
1

|a|X (
s

a
) for a ∈R\ {0} and with

s

a
∈ ROCx
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• Example

• Switch on. We have seen that the two-sided Laplace transform of the Heav-
iside unit step function u(t ) is given by

U (s) = 1

s
with s ∈ ROCu = {s ∈C;Re(s) > 0}

• Switch off. We have also seen that the two-sided Laplace transform of the
anti-causal switch-off signal f (t ) = u(−t ) is

F (s) =−1

s
with s ∈ ROC f = {s ∈C;Re(s) < 0}

• Clearly,
F (s) =U (−s) with s ∈ ROC f or −s ∈ ROCu

Properties of the Two-Sided Laplace Transform

Property Time signal Two-sided Laplace transform ROC Parameters

Convolution y(t ) = h(t )∗x(t ) Y (s) = H(s)X (s) ROCh ∩ROCx –

Diff. s-domain −t x(t ) dX (s)
ds ROCx –

Diff. t-domain dx(t )
dt sX (s) ROCx –

Int. t-domain
∫t
τ=−∞ x(τ)dτ 1

s X (s) {ROCx |Re(s) > 0} –

Shift t-domain x(t +τ) esτX (s) ROCx τ ∈R

Shift s-domain eat x(t ) X (s −a) s −a ∈ ROCx a ∈C

Scaling x(at ) 1
|a| X

( s
a

)
s/a ∈ ROCx a ∈R\ {0}
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• The One-Sided Laplace Transform

• Let x(t ) denote a causal signal: x(t ) = x(t )u(t )

• The two-sided Laplace transform simplifies to

X (s) =
∫∞

t=0
x(t )e−st dt s ∈ ROCx

• This transform is known as the one-sided Laplace transform

• A separate study is warranted, since many (most/all) signals and systems
encountered in practice/Nature are causal

• Switch-on phenomena (initial-value problems) are conveniently studied
using the one-sided Laplace transform

• To incorporate the Dirac distributionδ(t ), we define the one-sided Laplace
transform of a signal x(t ) as

X (s) =
∫∞

t=0−
x(t )e−st dt = lim

ε↓0

∫∞

t=−ε
x(t )e−st dt , s ∈ ROCx

• Many properties of the two-sided Laplace transform carry over to the one-
sided Laplace transform

• We only discuss three properties of the one-sided transform that do not
have a two-sided counterpart

• Differentiation in the time-domain

• Let X (s) denote the one-sided Laplace transform of the time-domain sig-
nal x(t )

• What is the one-sided Laplace transform of

y(t ) = dx(t )

dt
?
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• By definition

Y (s) =
∫∞

t=0−

dx(t )

dt
e−st dt , s ∈ ROCx

• Integration by parts gives

Y (s) = lim
T→∞,ε↓0

x(t )e−st |T−ε −
∫∞

t=0−
x(t )

[− se−st ]dt =−x(0−)+ sX (s)

with x(0−) = limε↓0 x(−ε) and s ∈ ROCx

• We have found that

dx(t )

dt
transforms into sX (s)−x(0−) s ∈ ROCx

• Similarly, by repeated integration by parts we find that

d2x(t )

dt 2 transforms into s2X (s)− sx(0−)− dx(t )

dt

∣∣∣
t=0− s ∈ ROCx

• Abel’s initial-value theorem

• Let X (s) be the one-sided Laplace transform of x(t ), s ∈ ROCx

• Abel’s initial-value theorem states that

lim
s→∞ sX (s) = x(0+),

with x(0+) = limε↓0 x(ε), provided x(t ) is regular at t = 0

• Left-hand side: Laplace-domain

• Right-hand side: time-domain

• We do not prove this theorem, we only make it plausible

• Consider

sX (s) =
∫∞

t=0−
x(t )se−st dt , s ∈ ROCx
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• Recall that the ROC is some right-half plane (or C)

• Take s real, positive, and sufficiently large so that s ∈ ROCx

• For increasing values of s, the function

se−st behaves as a Dirac distribution!

• For example, consider a regular causal signal with an abscissa of conver-
gence σc = 0

• In addition, we have
∫∞

t=0−
se−st dt = 1 for all s > 0

• Taking s = 1/4, s = 1/2, s = 1, s = 10, and s = 50 we find

• Abel’s final-value theorem

• Let X (s) denote the one-sided Laplace transform of x(t ), s ∈ ROCx

• Abel’s final-value theorem states that

lim
s→0

sX (s) = lim
t→∞x(t )

provided limt→∞ x(t ) exists

• Left-hand side: Laplace-domain

• Right-hand side: time-domain
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One-Sided Laplace Transforms

Time signal One-sided Laplace transform ROC parameters

eat u(t ) 1
s −a Re(s) > Re(a) a ∈C

−eat u(−t ) 0 C a ∈C

t k−1eat

(k −1)! u(t ) 1
(s −a)k Re(s) > Re(a) a ∈C, k ∈N

− t k−1eat

(k −1)! u(−t ) 0 C a ∈C, k ∈N

eat cos(Ω0t )u(t ) s −a
(s −a)2 +Ω2

0
Re(s) > a a,Ω0 ∈R

eat sin(Ω0t )u(t ) Ω0

(s −a)2 +Ω2
0

Re(s) > a a,Ω0 ∈R

δ(t ) 1 C –

δ′(t ) s C –

Properties of the One-Sided Laplace Transform: xc(t ) = x(t )u(t ), t ∈R

Property Time signal One-sided Laplace transform ROC Parameters

Convolution yc(t ) = hc(t )∗xc(t ) Y (s) = H(s)X (s) ROChc ∩ROCxc –

Diff. s-domain −t x(t ) dX (s)
ds ROCxc –

Diff. t-domain dx(t )
dt sX (s)−x(0−) ROCxc –

Int. t-domain
∫t
τ=0− x(τ)dτ 1

s X (s) {ROCxc |Re(s) > 0} –

Shift t-domain xc(t −τ) e−sτX (s) ROCxc τ ∈R, τ> 0

Shift s-domain eat x(t ) X (s −a) s −a ∈ ROCxc a ∈C

Scaling x(at ) 1
a X

( s
a

)
s/a ∈ ROCxc a ∈R, a > 0
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• Circuit Theory Revisited

• KCL Kirchhoff’s current law: the algebraic sum of all branch currents flow-
ing into any node must be zero

• For a node with N branches

N∑
n=1

in(t ) = 0

• KVL Kirchhoff’s voltage law: the algebraic sum of the branch voltages around
any closed path in a network must be zero

• For a closed path consisting of N branches

N∑
n=1

vn(t ) = 0

• Let
In(s) be the one-sided Laplace transform of in(t )

n = 1,2, ..., N

Vn(s) be the one-sided Laplace transform of Vn(t )

n = 1,2, ..., N

• Since the Laplace transform is linear, we have

• KCL Kirchhoff’s current law in the Laplace domain:

N∑
n=1

In(s) = 0

• KVL Kirchhoff’s voltage law in the Laplace domain:

N∑
n=1

Vn(s) = 0
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• Constitutive relations

• Resistor

v(t ) = R i (t ) with one-sided Laplace transform V (s) = RI (s)

• Capacitor

i (t ) =C
dv(t )

dt
with one-sided Laplace transform I (s) = sC V (s)−C v(0−)

• Inductor

v(t ) = L
di (t )

dt
with one-sided Laplace transform V (s) = sL I (s)−Li (0−)

• For circuits with vanishing initial conditions (the circuit is initially at rest),
we define the Laplace impedance Z (s) through the relation

V (s) = Z (s) I (s)

Resistor: Z (s) = R, Capacitor: Z (s) = 1

sC
, Inductor: Z (s) = sL

• Example. Consider the circuit sketched below

• Input signal: is(t ) = I0δ(t )

• Output signal: v(t )

• The circuit is initially at rest

• Kirchhoff’s current law in the time-domain:

C
dv

dt
+R−1v(t ) = I0δ(t ), t > 0−

v(0−) = 0
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• Kirchhoff’s current law in the s-domain:

sCV (s)+R−1V (s) = I0

• Divide by C to obtain
(

s + 1

τ

)
V (s) = I0

C
, τ= RC

• We find

V (s) = I0

C

1

s + 1
τ

, τ= RC

• Using the table for one-sided Laplace transforms, the voltage is found as

v(t ) = I0

C
e−t/τu(t ), τ= RC

• The current through the capacitor follows as

ic(t ) =C
dv(t )

dt
= I0

[
δ(t )− 1

τ
e−t/τu(t )

]
, τ= RC

• Observe that we can also write

Ic (s) = Ycap(s)

Ycap(s)+Yres(s)
I0

• Ycap(s) = sC and Yres(s) = R−1 are the Laplace domain admittances of the
capacitor and resistor, respectively (Y (s) = Z−1(s))

• Substitution gives

Ic (s) = sC

sC +R−1 I0 =
(

1− 1

τ

1

s + 1
τ

)
I0, τ= RC

• Using the table for the one-sided Laplace transform, we again arrive at

ic(t ) = I0

[
δ(t )− 1

τ
e−t/τu(t )

]
, τ= RC
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