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M The Laplace Transform

Given an LTI system with a single input and a single output
Input signal: x(1)

Output signal: y (1)

We have seen that the output signal is given by the convolution of the in-
put signal x(¢) and the impulse response h(1):

0@

y(1) :f x(r)h(t—r)dT:f x(t—1)h(r)dT

=—00 T=—00

Input OQutput
x(1) y(t)=S[x(1)]




M The Laplace Transform

e Let the input signal be given by

x(H)=e’t with seC

e The corresponding output signal is

y(t) :f S p(r)dr :j h()e " dr e’ = H(s)x()

=—00 T=—00
with -
H(s) = f h(n)e >t dr
T

=—00




M The Laplace Transform

e We observe that the output signal is a multiple of the input signal (pro-
vided the integral converges, of course): y(t) = H(s)e*’

S {e' }=H(s) e
A u A u
Compare this with a standard eigenvalue problem in linear algebra:

Au=A7Au

e H(s)is an eigenvalue of the LTI system corresponding to the eigenfunction
x(t) = e’
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e The expression for H(s) is precisely the definition of the two-sided Laplace
transform of /(¢)

e Two-sided Laplace transform of a signal x(#):

X(s) = f x(t)e Stdt
t

=—00

defined, of course, for those s € C for which the integral converges
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e To investigate under what condition(s) convergence takes place, we con-
sider

* the Laplace transform of causal signals: x(¢) =01for t <0

* the Laplace transform of anti-causal signals: x(#) =0 for t >0

* the Laplace transform of noncausal signals
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e A causal signal x(#) is said to be of exponential order if there exists con-
stants A and a such that

1x(0)] < Ae*t fort=0

e [t can be shown that for causal signals of exponential order there exists a

unique number —oco < g < co such that the Laplace integral converges for
Re(s) > o

e The number o is called the abscissa of convergence




M The Laplace Transform

The set {s € C;Re(s) > g} is called the Region of Convergence (ROC)

To avoid confusion, we sometimes write ROC, to indicate the ROC of the
Laplace transform of a signal x(#)

Note that the ROC of a causal signal (of exponential order) is a right-half
plane (unless o, = —o0o, of course)

It can also be shown that X (s) is analytic on its ROC
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M The Laplace Transform

 Example 1: The two-sided Laplace transform of the Heaviside unit step
function u(t)

0 o0 1
U(s):f u(t)e‘“dt:f e Stdt== forRe(s)>0
t

=—00 =0 S

e In this case ROC = {s € C;Re(s) > 0}
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e Example 2: The two-sided Laplace transform of a scaled rectangular pulse
function x(¢) = p(+), T >0

00 T 1
X(s)zf x(t)e‘“dtzf e Sfdr==(1-e7"), secC
A

=—00 =0 S

* Note that there is no pole at s =0

e In this case ROC=C
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An anti-causal signal x(#) is said to be of exponential order if there exists
constants B and p such that

lx(1)| < BeP! fort<0

For anti-causal signals of exponential order it can be shown that there ex-
ists a number —oo < 0, < oo such that the Laplace integral converges for
Re(s) < 04¢

The number o4 is again called the abscissa of convergence and the ROC
is a left-half plane (unless 0 3. = 00)

The Laplace transform is analytic on the ROC
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M The Laplace Transform

Gac

Re(s)
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e Example. The two-sided Laplace transform of x(¢) = u(—1t)

o0 0 1
X(s):f x(t)e‘”dt:f e Stdr=-= forRe(s) <0

=—00 =—0Q0 S

e For this signal the ROC = {s € C;Re(s) < 0}
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e Specifying the ROC is important!
e For example, X(s) =1/s can be

* the Laplace transform of the causal signal x(1) = u(1), or

* the Laplace transform of the anti-causal signal x(¢) = —u(—1)

 Which one is intended becomes clear by specifying the ROC
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e Finally, what about noncausal signals?

e For such a signal we write

x(8) =x(0)-1=x() [u(®) + u(=1)| = xc(£) + Xac (1)

Xc(B) =x(Du(t) and Xac(f) = x(Hu(-1)
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The Laplace transform of x.(#) is X(s) with a region of convergence given
by ROCy,

The Laplace transform of x,c(f) is X,c(s) with a region of convergence
given by ROCy,_

The Laplace transform of the noncausal signal x(1) is given by X (s) = Xc(s)+

Xac(s) with a region of convergence given by ROC, = ROC,. nROCy,

The two-sided Laplace transform of x(#) does not exist if ROC, = @

If the two-sided Laplace transform exists then in general its ROC is a strip
in the complex s-plane
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M The Laplace Transform

Gac

Re(s)
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 Example 1: The two-sided Laplace transform of the noncausal signal x(#) =
_| t| .
e ''is

2 :
X(s)=- 5 with —1<Re(s) <1
s¢—1

 Example 2: The two-sided Laplace transform of the noncausal signal x(#) =
e’ with a € C does not exist
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e The two-sided Laplace transform of the Dirac distribution is

f S(He Stdr=1, seC
t

=—00

 The two-sided Laplace transform of the derivative of the Dirac distribu-
tion is

f ' (e Stdr
t

=—00

e Recall that
fé6' (1) =-f 06+ f0)5 (1)
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e Using the above equation with f(#) =e

—St

gives

e S8 (1) = s6(1) + 8 (1)

e and substitution results in

f 5' (e Stdr=s, seC

=—00

f O0(t)dt=1 and
t

=—00

0@

S'(Hdr=0

[=—00
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Two-Sided Laplace Transforms

Time signal

Two-sided Laplace transform

ROC

parameters

e u(r)

Re(s) > Re(a)

aeC

—eu(-1

Re(s) < Re(a)

aeC

tk_l at

T4

Re(s) > Re(a)

acC, keN

tk_l at

= prin

Re(s) < Re(a)

acC, keN

et cos(Qot)u(t)

Re(s) > a

a,peR

esin(Qo ) u(t)

Re(s) > a

o (1)

o' (1)

22
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e Note that the Laplace transforms of the signals in the above table are ra-
tional functions

some polynomials in s

X(8) =

some other polynomial in s
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Convolution Let y(t) = x (1) * h(t)

X(s) is the two-sided Laplace transform of x(#) with a region of conver-
gence ROC

H(s) is the two-sided Laplace transform of /(¢) with a region of conver-
gence ROCy,

The Laplace transtorm of y(¢) is

Y (s) = X(s)H(s) with ROC;, =ROC,NnROCy,
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e A convolution product in the time-domain is transformed into an ordi-
nary product in the s-domain!

e Let’s verify this statement
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e We start with the definition of the two-sided Laplace transform

Y (s) =f y(t)e s'dt
4

=—00

e Substitution of the convolution integral gives

Y (s) :j f x(Dh(t-1)dre Stdt
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e Interchanging the order of integration, we get

Y (s) :foo x(1) hit—1)e Stdtdr

=—00 [=—00

p::t_rf x(r)f h(p)e SP 0 dpdr
T=—00 p=—00

:f x(t)e " drf h(p)e *Pdp

=—00 p=—00

= X(S)H(s)

with s € ROC, NnROCy,
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Given an LTT system with input signal x(#) and output signal y(#)
Let h(¢) denote the impulse response of this system

Output signal:

y(1) :f h(t)x(t—1)drt

=—00

In the Laplace- or s-domain:

Y (s) = H(s) X(s) with s € ROC, NnROCy,

H (s) is called the transfer function of the system
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e Example Let x(¢) = u(t) and h(t) = e”'u(t). We are interested in the con-
volution product y(f) = x(&) * h(¥)

e Computing this product directly, we find

() = for t <0
d B frtzoh(t_T)dT:]._e_t forr>0

* The two-sided Laplace transform of x(¢) is given by

X(s) = %, Re(s) >0
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* The two-sided Laplace transform of h(#) is given by

H(s) = %, Re(s) > —1

S+

* The two-sided Laplace transform of y () is given by

Y(s)=X(s)H(s) = ! , Re(s) >0
s(s+1)
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What time signal corresponds this Laplace domain function?

Observe that . .
Y§)=———, Re(s) >0
s Ss+1

Using the table, we find y(£) = (1 — e~ ) u(t) or

(1) = 0 fort<0
PR = 1—-e ! fort>0

Much more on the inverse Laplace transform in the next lecture
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Differentiation in the Laplace-domain

Let X (s) be the two-sided Laplace transform of a signal x(#) with a region
of convergence given by ROC,

We have stated that X(s) is analytic on ROCy

The Laplace transform can therefore be differentiated

We have

dX(s) d [

x(He s'dt,  seROC,
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e Interchanging the order of differentiation and integration, we find

dX(s) :f [—tx(n)]e™**ds,  seROCy

ds

=—00
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M The Laplace Transform

* The expression on the right is the Laplace transtorm of —tx (1)

e We conclude that

. dX(s)
—tx(t) transforms into P s € ROC,

e Differentiation in the Laplace-domain corresponds to multiplication by
—tin the time-domain
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e Differentiation in the time-domain

e Suppose we are given a time-domain signal x(#) with a two-sided Laplace
transform X(s), s € ROC,

e What is the Laplace transform of
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M The Laplace Transform

e By definition, we have

oo dx(t
Y (s) :f o )e_”dt
I=—00 dt

= lim x(f)e !

T—o00

= Sf x(He Stdt
¢

=—00

= sX(s), with s € ROC,
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e The first term on the right-hand side on the second line (blue formula)
vanishes because we assumed that X (s) exists

e We have found that

dx(?)
dr

transforms into s X(s) s € ROC,
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Differentiation in the time-domain transforms into multiplication by s in
the Laplace domain!

Integration in the time-domain

Suppose that we are again given a time-domain signal x(¢) with a two-
sided Laplace transform X (s), s € ROC,

What is the Laplace transform of

t
y(t) =f x(7)dt?

=—00
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e Observe that y is the convolution of x and the Heaviside unit step func-
tion u:

y(1) :f x(n)u(t—71)dr

=—00

e Using the convolution property, we find

1
S

e [f ROC,NnROC, = @ then the Laplace transform of y(¢) does not exist
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e Since ROC,, = {s € C;Re(s) > 0}, we can also write

Y(s) = %X(s), s € {ROCy|Re(s) > 0}

e We have found that

g 1
f x(r)dr transforms into —X(s) s € {ROCy|Re(s) > 0}
T

o5 S

e Integration in the time-domain transforms in to division by s in the Laplace
domain!
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M The Laplace Transform

e Shift in the time-domain

e Again we have a signal x(#) with a two-sided Laplace transform X(s), s €
ROC

e Let y(¢) be a shifted version of x(#) with time shift 7 € R:

y(t) =x(t+1), TER
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 What is the Laplace transform of y(1)?

* We compute

Y(s)zfoo x(t+1)e Stde

=—00

P=:t+rf x(p)e—s(p—ﬂ dp

p=—00

= e”f x(p)e *Pdp

p=—00

=e’ " X(s), s € ROC,
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e We have found that

x(t+ 1) transforms into e°* X (s),

s € ROC,
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e Example. Suppose the two-sided Laplace transform of a signal h(1) is
given by

H(s) =

p—s with T>0 and ROCj, ={se C;Re(s) >0}
—e

e Whatis h(1)?

e Set z=e %!, We then have




45

M The Laplace Transform

* Now recall the power series

:1+z+z2+...

1—-2

for|zl<land zeC
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e In our case, we have with s = g +jQ:

—ST|:

~oTHOT| -

1z = |e E e | [ | =70t

)

e We also have Re(s) =0 >0and T > 0. Consequently,

ol

lz|=e "7 <1

since |e

—jQT| _1
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Using the Laplace transform of the Dirac distribution and the shifting prop-
erty, we find
h(t)=0()+06(t—T)+06(t—-2T)+...

Suppose x(¢) is a causal signal with support (0, Ty)

For example, x(¢) = A(#), support (0,2)

The Laplace transform of x(#) is X(s), s€ C
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e Given now an LTT system with a transfer function

H(s) =

— with T > T, and Re(s) >0
—e

e The Laplace transform of the output signal is




49

M The Laplace Transform

e The corresponding output signal is given by the convolution integral

y(1) :f h(t)x(t—T1)dTt

——00

h(t)=6(0)+6(t—T)+6(t-2T)+...= Z O(t—kT)
k=0
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e Substitution gives

oo

y(1) :f h(r)x(t—r)drzf Y S(r—kT)x(t—1)dr

=—00 T==00 k=0

=) S(r—kTx(t—1)dr =) x(t—kT)
k=0JT=700 k=0

=x(O+x(t-T)+x(t=-2T) +...

e We have constructed a periodic extension of x(f) for t >0
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Shift in the Laplace domain
Let X(s) be the two-sided Laplace transform of x(#) with s € ROC,

Is there a time-domain signal that corresponds to X(s— a) with s—a €
ROC,?

We use the definition of the Laplace transform

0. @)

X(s—a):f x(t)e_(s_“)tdt:f e x(r) e Stdr
¢

=—00 [=—00

The answer is yes

e x(t) transforms into X (s — a), s—a € ROC,
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Scaling

Let x(1) have a two-sided Laplace transform X (s) with s € ROC,

Given a nonzero real number a, what is the Laplace transform of

y(t) =x(ar)?

We use the definition of the Laplace transform
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e For a> 0, we find

Y(s):j y(t)e‘“dt:j

=—00

T=at 1 [OO
a T=—0O0

L),

a a

=—00

x(t)e YT 4

s/a € ROC,

x(at)e Stdt
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e Similarly, for a < 0 we obtain

Y (s) :—%X(

e Combining both results, we have

1 S
x(at) transforms into — X (—)
lal| a

S
a

|

s/a € ROC,

forae R\ {0} and with il e ROC,
a
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Example

Switch on. We have seen that the two-sided Laplace transform of the Heav-
iside unit step function u(¢) is given by

1
U(s) = R with se€ROC, = {s € C;Re(s) > 0}

Switch off. We have also seen that the two-sided Laplace transform of the
anti-causal switch-off signal f(¢) = u(—1) is

1
F(s) = 3 with s € ROCyr = {s € C;Re(s) < 0}

F(s)=U(-s) with se ROCs or —s € ROC,
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Properties of the Two-Sided Laplace Transform

Property Time signal Two-sided Laplace transform ROC Parameters

Convolution  y(f) = h(t) * x(1) Y(s)=H(s)X(s) ROCj;, NnROC,

Diff. s-domain —tx(t) diﬁs) ROC,

Diff. t-domain dfl(tt ) sX(s) ROC,

Int. --domain  ['____x(r)dr 1X(s) {ROC,|Re(s) > 0}

Shift -domain x(t+1) e’ X (s) ROC,

Shift s-domain e x(1) s—a€ROC,

Scaling x(at) s/a € ROCy

56
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The One-Sided Laplace Transform
Let x(t) denote a causal signal: x(t) = x(#) u(1)

The two-sided Laplace transtorm simplifies to

X(s):f x(He Stdt s € ROC,
£=0

This transform is known as the one-sided Laplace transform
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e A separate study is warranted, since many (most/all) signals and systems
encountered in practice/Nature are causal

e Switch-on phenomena (initial-value problems) are conveniently studied
using the one-sided Laplace transform

e Toincorporate the Dirac distribution 6 (¢), we define the one-sided Laplace
transform of a signal x() as

X(s) = f x(He tdt =1lim x(H)e Stdt, s € ROC,
5

=0 ClO [=—€
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e Many properties of the two-sided Laplace transform carry over to the one-
sided Laplace transform

e We only discuss three properties of the one-sided transform that do not
have a two-sided counterpart
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e Differentiation in the time-domain

e Let X(s) denote the one-sided Laplace transtorm of the time-domain sig-
nal x(1)

e What is the one-sided Laplace transform of

(t)_dx(t)?
O==qr
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* By definition

e Integration by parts gives

Y(s)= lim x(t)e‘“Ee—j x(t)[—se | dt = —x(07) + sX(s)
A

T—o00,e|0

with x(07) =lim¢ g x(—€) and s € ROC;
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e We have found that

dx(7) . _
P transforms into s X (s) — x(0)

s € ROC,
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e Similarly, by repeated integration by parts we find that

d®x (1) dx(?)

. 2 —
172 transforms into s° X (s) — sx(07) — 7 |ieo-
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Abel’s initial-value theorem

Let X (s) be the one-sided Laplace transform of x(z), s € ROC,,

Abel’s initial-value theorem states that

lim sX(s) =x(0"),

§—00

with x(0™) = lim¢ | x(€), provided x(¢) is regular at £ =0

Left-hand side: Laplace-domain

Right-hand side: time-domain
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e We do not prove this theorem, we only make it plausible

e Consider

0.9
sX(s) = j x(t)se Stdrt, s € ROC,
t=0"
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e Recall that the ROC is some right-half plane (or C)

e Take s real, positive, and sufficiently large so that s € ROC,

e Forincreasing values of s, the function

se 5" behaves as a Dirac distribution!

00
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e For example, consider a regular causal signal with an abscissa of conver-
gence 0. =0

e In addition, we have

(0,0
f seStdr=1 foralls>0
=0~

e Takings=1/4,s=1/2,s=1, s=10, and s = 50 we find
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0.25

s=0.25
I

0.2

0.15+

s*t)

01

s*exp(

0.05

10



69

M The Laplace Transform

0.5
0.45
0.4
0.35
= 03
‘§o.25

0.15
0.1
0.05

s=0.5
I
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s=1




/1

The Laplace Transform

—_
o

s=10

s*exp(-s*t)
O = N W H O1 O N 00 ©
I ! f f T I




(2

The Laplace Transform

s=50
I
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Abel’s final-value theorem

Let X (s) denote the one-sided Laplace transform of x(z), s € ROC,

Abel’s final-value theorem states that

limsX(s) = lim x(?)
s—0 [—00

provided lim,_, o x(#) exists
Left-hand side: Laplace-domain

Right-hand side: time-domain
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Niels Henrik Abel
Born 1802
Died 1829
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One-Sided Laplace Transforms

Time signal

One-sided Laplace transform

ROC

parameters

e u(r)

Re(s) > Re(a)

acC

—ey(—1)

C

acC

Ge—r

Re(s) > Re(a)

aeC, keN

G—pr=on

C

aeC, keN

ea

Fecos(Qo ) ul(l)

a,QpeR

ea

Fsin(Qo ) u(t)

a,QpeR

o (1)

o' (1)

l4s)



M The Laplace Transform

Properties of the One-Sided Laplace Transform: x.(¢) = x(f)u(t), te€R

Property Time signal One-sided Laplace transform ROC Parameters

Convolution  y.(1) = he() * xc (1) Y(s)=H(s)X(s) ROCj,. NROCy,

Diff. s-domain —tx(1) % ROC,,

Diff. £-domain Aty sX(s) = x(07) ROC;,

oo Xx()dt 1X(s) {ROCy, [Re(s) > 0}

Shift r-domain Xc(t—1) e ST X(s) ROC;, TeER, 7>0

Int. z-domain I

Shift s-domain e x(r) s—a€ROCy, aeC

Scaling x(at) s/a € ROCy, acR,a>0

/0
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e Circuit Theory Revisited

e KCL Kirchhoft’s current law: the algebraic sum of all branch currents flow-
ing into any node must be zero

e For a node with N branches

N
Z in(t) =0
n=1
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e KVL Kirchhoft’s voltage law: the algebraic sum of the branch voltages around
any closed path in a network must be zero

e For a closed path consisting of N branches

N
Z Vn(t) =0
n=1
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e Since the Laplace transform is linear, we have
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e KCL Kirchhoff’s current law in the Laplace domain:
N

Z I,(s)=0
n=1

e KVL Kirchhoft’s voltage law in the Laplace domain:

N
Z Viu(s) =0
n=1
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e Constitutive relations

e Resistor

v(t) = Ri(t) with one-sided Laplace transform V(s) = RI(S)
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* Capacitor

dv(t)

I(H=C P

with one-sided Laplace transform I(s) =sCV(s)—Cv(0)
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e Inductor

di(?)

v(t)=L 17

with one-sided Laplace transform V(s) =sLI(s)—Li(0")
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e For circuits with vanishing initial conditions (the circuit is initially at rest),
we define the Laplace impedance Z(s) through the relation

V(s)=Z(s) I(s)

1
Resistor: Z(s) = R, Capacitor: Z(s) = <’ Inductor: Z(s) = sL
S
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Example. Consider the circuit sketched below

Input signal: is(t) = Ipo (1)

Output signal: v(#)

The circuit is initially at rest
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e Kirchhoff’s current law in the time-domain:

C@ + R Yu() = 16 (1)
dt - 0RRE
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e Kirchhoft’s current law in the s-domain:

sCV(S)+R V(s =1

e Divide by C to obtain
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e Using the table for one-sided Laplace transforms, the voltage is found as

i
v(t) = EOe_”Tu(t), T =RC

e The current through the capacitor follows as

iC(t):CM:IO 6(t)—le_mu(t) ,
dt T
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e Observe that we can also write

* Yeap(s) = sC and Yies(s) = R~ are the Laplace domain admittances of the
capacitor and resistor, respectively (Y (s) = Z~1(s))
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e Substitution gives

I —
e($) sC+R

e Using the table for the one-sided Laplace transform, we again arrive at

1
i.(1) = I 6(t)—;e_mu(t) . T=RC




