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• Linear and Time-Invariant systems (LTI systems)

• The impulse response of an LTI system and the convolution integral

• Causal systems

• Bounded-Input Bounded-Output systems

• We consider a system with a single input and a single output

• Input signal: x(t ), output signal y(t )

• Such systems are called SISO systems

• SISO stands for Single Input Single Output

• If a system has Multiple Inputs and Multiple Outputs it is called a MIMO
system

• We restrict ourselves to SISO systems

• The action of the system on the input signal x(t ) is described by the system
operator S

• We write
y(t ) = S

{
x(t )

}

• In this course we are particularly interested in systems that are Linear and
Time-Invariant

• Such systems are called LTI systems

• Linearity Suppose we have two input signals x1(t ) and x2(t ). Denote the
corresponding output signals by y1(t ) and y2(t ):

y1(t ) = S
{

x1(t )
}

and y2(t ) = S
{

x2(t )
}

The system is called linear if

y(t ) = S
{
αx1(t )+βx2(t )

}

=αS
{

x1(t )
}+βS

{
x2(t )

}

=αy1(t )+βy2(t )

for any two constants α and β
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• Any linear combination of input signals produces the same linear combi-
nation of their corresponding output signals

• Taking β= 0, it follows from the above definition that

y(t ) = S
{
αx1(t )

}=αS
{

x1(t )
}=αy1(t )

• In other words, if you scale the input signal by a factor α, the output signal
will scale with the same factor

• Example Consider a SISO system with input signal x(t ) and an output sig-
nal given by

y(t ) = 1

T

∫t

τ=t−T
x(τ)dτ+B ,

where B is a constant. Such a system is called a biased averager (can you
see why?)

• Scaling the input signal by a factor α, we obtain the output signal

α

T

∫t

τ=t−T
x(τ)dτ+B ,

which is not equal to αy(t ) unless B = 0

• The averager is nonlinear for B �= 0

• For B = 0, it is easy to see that a linear combination of input signals pro-
duces the same linear combination of the corresponding output signals

• The averager is linear for B = 0

• Time-Invariance Let y(t ) be the output signal that corresponds to an in-
put signal x(t ):

y(t ) = S
{

x(t )
}

• The system is called time-invariant if

y(t ±τ) = S
{

x(t ±τ)
}

for any time shift τ> 0

• In words: shifting your input signal produces an equally time-shifted out-
put signal

Linear and Time-Invariant Systems
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• Let the Dirac distribution be the input signal of an LTI system

• The corresponding output signal is written as h(t ) and is called the im-
pulse response:

h(t ) = S
{
δ(t )

}

• We claim that if you know the impulse response of an LTI system then you
know the response to any other input signal!

• To show this, let y(t ) be the output signal that corresponds to an input
signal x(t ):

y(t ) = S
{

x(t )
}

• Because of the sifting property of the Dirac distribution, we have

x(t ) =
∫∞

τ=−∞
x(τ)δ(t −τ)dτ

• The right-hand side of the above expression can be seen as a continuous
weighted summation of shifted Dirac distributions

• Substitution gives

y(t ) = S
{∫∞

τ=−∞
x(τ)δ(t −τ)dτ

}

• Now note that S is linear and acts on functions that depend on time t

• This allows us to write

y(t ) =
∫∞

τ=−∞
x(τ)S

{
δ(t −τ)

}
dτ

• Since the system is time-invariant as well, we have

h(t −τ) = S
{
δ(t −τ)

}

• and we arrive at

y(t ) =
∫∞

τ=−∞
x(τ)h(t −τ)dτ

• Knowing the impulse response h(t ), we can determine the response y(t )
to any input signal x(t ) by evaluating the above integral

Linear and Time-Invariant Systems
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• This integral is called a convolution integral

• Short-hand notation:

y = x ∗h or y(t ) = x(t )∗h(t )

• The asterisk is called the convolution product

• The output signal y(t ) is equal to the convolution product of the input
signal x(t ) and the impulse response h(t )

• For two real numbers a and b, we have

ab = ba

• The product of two real numbers commutes

• Is this also true for the convolution product? In other words, do we have

x ∗h = h ∗x?

• The answer is yes. Let’s check it.

y(t ) = x ∗h

=
∫∞

τ=−∞
x(τ)h(t −τ)dτ

p=t−τ=
∫∞

p=−∞
x(t −p)h(p)dp

=
∫∞

p=−∞
h(p)x(t −p)dp = h ∗x

• Conclusion: the convolution product of two signals commutes (due to the
minus sign in the argument of h)

• If you change the minus sign into a plus sign you get what is called the
cross-correlation of the two signals x(t ) and h(t ) provided these signals
are both real-valued:

y(t ) =
∫∞

τ=−∞
x(τ)h(t +τ)dτ= x �h

• The cross correlation of two signals does not commute

x �h �= h �x

Linear and Time-Invariant Systems
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• For the product of real numbers, there exists an identity element called
“one" and written as 1 for which

a = a ·1 = 1 ·a

• What is the identity element for the convolution product?

• We already know the answer to this question

• It is the Dirac distribution!

x = x ∗δ= δ∗x

• The convolution product is also associative, that is, for three signals u, v ,
and w , we have (check this yourself)

(u ∗ v)∗w = u ∗ (v ∗w)

• This property can be exploited to determine the total impulse function of
two LTI systems interconnected in cascade

• System 1: input signal x(t ), impulse function h1(t ), output signal u(t )

• System 2: input signal u(t ), impulse function h2(t ), output signal y(t )

• We assume that System 2 does not “load" System 1

• Response of the total system:

y = u ∗h2 = (x ∗h1)∗h2 = x ∗ (h1 ∗h2) = x ∗h

• where we have introduced the impulse function of the total system as

h = h1 ∗h2 = h2 ∗h1

• Note that since the convolution product of two signals commute, we can
interchange the order of the subsystems without affecting the output sig-
nal y(t ) (provided both systems do not “load" each other)
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• Computing the convolution integral: Example 1

• We compute the convolution of the rectangular pulse p with itself

• Recall that

p(t ) =
{

1 for 0 < t < 1

0 otherwise

• By definition, we have

y(t ) = p ∗p =
∫∞

τ=−∞
p(τ)p(t −τ)dτ

• Since p vanishes outside the interval (0,1), the integral simplifies to

y(t ) =
∫1

τ=0
p(t −τ)dτ

• It is convenient to rewrite this integral in such a way that the time coordi-
nate t appears in the integration limits of the integral

• We use the substitution t ′ = t −τ to achieve this and arrive at

y(t ) =
∫t

t ′=t−1
p(t ′)dt ′

• Now observe that for t < 0 we integrate over an interval outside the sup-
port of p. Consequently,

y(t ) = 0 for t < 0

• Similarly, for t −1 > 1 we again integrate over an interval outside the sup-
port of p. We have

y(t ) = 0 for t > 2
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• For 0 < t < 1 the lower bound falls outside of the support of p, while the
upper bound belongs to this support. We have

y(t ) =
∫0

t ′=t−1
p(t ′)dt ′

︸ ︷︷ ︸
=0

+
∫t

t ′=0
p(t ′)dt ′ =

∫t

t ′=0
dt ′ = t for 0 < t < 1

• Finally, for 1 < t < 2 the upper bound falls outside of the support of p and
the lower bound is in the support of p. In this case, we have

y(t ) =
∫1

t ′=t−1
p(t ′)dt ′ +

∫t

t ′=1
p(t ′)dt ′

︸ ︷︷ ︸
=0

=
∫1

t ′=t−1
dt ′ = 2− t for 1 < t < 2

• Putting everything together, we find

y(t ) =Λ(t )

• The convolution of the rectangular pulse with itself produces the triangu-
lar pulse function

• Computing the convolution integral: Example 2

• We graphically determine the convolution of p(t ) and p(t/10) (we use the
blackboard for this)

• Finally, if the support of a signal x is (�x ,ux ) and the support of a signal h
is (�h ,uh) then

the support of y(t ) = x(t )∗h(t ) is (�x +�h ,ux +uh)

Verify this statement!

Linear and Time-Invariant Systems

25



• For 0 < t < 1 the lower bound falls outside of the support of p, while the
upper bound belongs to this support. We have

y(t ) =
∫0

t ′=t−1
p(t ′)dt ′

︸ ︷︷ ︸
=0

+
∫t

t ′=0
p(t ′)dt ′ =

∫t

t ′=0
dt ′ = t for 0 < t < 1

• Finally, for 1 < t < 2 the upper bound falls outside of the support of p and
the lower bound is in the support of p. In this case, we have

y(t ) =
∫1

t ′=t−1
p(t ′)dt ′ +

∫t

t ′=1
p(t ′)dt ′

︸ ︷︷ ︸
=0

=
∫1

t ′=t−1
dt ′ = 2− t for 1 < t < 2

• Putting everything together, we find

y(t ) =Λ(t )

• The convolution of the rectangular pulse with itself produces the triangu-
lar pulse function

• Computing the convolution integral: Example 2

• We graphically determine the convolution of p(t ) and p(t/10) (we use the
blackboard for this)

• Finally, if the support of a signal x is (�x ,ux ) and the support of a signal h
is (�h ,uh) then

the support of y(t ) = x(t )∗h(t ) is (�x +�h ,ux +uh)

Verify this statement!

Linear and Time-Invariant Systems

Animation by Brian Amberg and adapted by Tinos (Wikipedia)

26






• For 0 < t < 1 the lower bound falls outside of the support of p, while the
upper bound belongs to this support. We have

y(t ) =
∫0

t ′=t−1
p(t ′)dt ′

︸ ︷︷ ︸
=0

+
∫t

t ′=0
p(t ′)dt ′ =

∫t

t ′=0
dt ′ = t for 0 < t < 1

• Finally, for 1 < t < 2 the upper bound falls outside of the support of p and
the lower bound is in the support of p. In this case, we have

y(t ) =
∫1

t ′=t−1
p(t ′)dt ′ +

∫t

t ′=1
p(t ′)dt ′

︸ ︷︷ ︸
=0

=
∫1

t ′=t−1
dt ′ = 2− t for 1 < t < 2

• Putting everything together, we find

y(t ) =Λ(t )

• The convolution of the rectangular pulse with itself produces the triangu-
lar pulse function

• Computing the convolution integral: Example 2

• We graphically determine the convolution of p(t ) and p(t/10) (we use the
blackboard for this)

• Finally, if the support of a signal x is (�x ,ux ) and the support of a signal h
is (�h ,uh) then

the support of y(t ) = x(t )∗h(t ) is (�x +�h ,ux +uh)

Verify this statement!

Linear and Time-Invariant Systems

27



Linear and Time-Invariant Systems

Animation by Brian Amberg and adapted by Tinos (Wikipedia)

Another example:

28






• Up till now we have been looking at fairly general systems whose action
on the input signal is described by some operator S

• Let us now be more specific and consider systems described by the linear
ordinary differential equation

(
aN

dN

dt N
+aN−1

dN−1

dt N−1
+ ...+a1

d

dt
+a0

)
y(t ) =

(
bM

dM

dt M
+bM−1

dM−1

dt M−1
+ ...+b1

d

dt
+b0

)
x(t )

which holds for t > 0

• N and M are positive integers

• x(t ) is the prescribed input signal

• y(t ) is the desired output signal

• To obtain the output signal y(t ), we also need the N initial conditions

y(0) and
dk y(t )

dt k

∣∣∣
t=0

for k = 1,2, ..., N −1

• RLC circuits, mechanical systems, etc. can all be described by a differen-
tial equation of the above form

• Further on we will show you how to solve the differential equation using
the Laplace transform

• For now it suffices to say that the solution y(t ) is given by

y(t ) = yzs(t )+ yzi(t )

• yzs(t ) is called the zero-state response. This is the solution exclusively due
to the input with the initial conditions set to zero

• yzi(t ) is called the zero-input response. This is the solution exclusively due
to the initial conditions with the input set to zero
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• For vanishing initial conditions the system is linear and time-invariant
(LTI). This can easily be seen from the differential equation (check this
for yourself)

• In this case the zero-input response vanishes and the solution is equal to
the zero-state response

• For nonvanishing initial conditions, the system is no longer an LTI system

• Example. Consider a circuit consisting of a resistor of R in series with an
inductor L and a voltage source v(t ) = Bu(t ). The initial current in the
inductor is I0. The input signal of the system is v(t ), the current i (t ) in the
circuit is the output signal.

• From Kirchhoff’s voltage law:

L
di (t )

dt
+Ri (t ) = v(t ) t > 0

with initial condition i (0) = I0

• The output signal is given by

i (t ) = izs(t )+ izi(t ), t > 0

• with

izs(t ) = B

R
(1−e−t/τ), izi(t ) = I0e−t/τ, and τ= L/R

• If we double the amplitude of the input signal then the output signal be-
comes

i (t ) = 2izs(t )+ izi(t )

with izs(t ) and izi(t ) as above
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• We observe that the output is not doubled, since izi(t ) does not vanish

• However, for I0 = 0 (vanishing initial condition) we do have izi(t ) = 0 and
the output is doubled in this case

• With vanishing initial conditions, the system is linear

• A continuous-time system S is causal if

* whenever its input x(t ) = 0, and there are no initial conditions, the
output is y(t ) = 0

* the output y(t ) does not depend on future inputs

• An LTI system is causal if

h(t ) = 0 for t < 0 (causal LTI system)

• Indeed, for an LTI system we have the convolution integral

y(t ) =
∫∞

τ=−∞
x(τ)h(t −τ)dτ

• and writing this integral as

y(t ) =
∫t

τ=−∞
x(τ)h(t −τ)dτ+

∫∞

t
x(τ)h(t −τ)dτ

• we observe that in the second integral integration takes place over future
inputs

• For a causal LTI system, these inputs cannot contribute to the output sig-
nal at time instant t

• Consequently, for a causal system we must have h(t −τ) = 0 for t < τ<∞
or h(t ) = 0 for t < 0

• In case the LTI system is causal we are left with

y(t ) =
∫t

τ=−∞
x(τ)h(t −τ)dτ
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• In addition, if the input signal also vanishes prior to t = 0, that is, if x(t ) = 0
for t < 0, then the convolution integral simplifies even further. In this case
we have

y(t ) =
∫t

τ=0
x(τ)h(t −τ)dτ

• Finally, we discuss the concept of BIBO stability

• BIBO stands for Bounded Input Bounded Output

• We are given a bounded input signal x(t ), that is, a signal that satisfies

|x(t )| ≤ M

for some positive M

• We ask: Under what condition(s) is the output signal y(t ) also bounded?

• To answer this question, consider

|y(t )| =
∣∣∣
∫∞

τ=−∞
x(t −τ)h(τ)dτ

∣∣∣

≤
∫∞

τ=−∞
|x(t −τ)| |h(τ)|dτ

≤ M
∫∞

τ=−∞
|h(τ)|dτ

• From this inequality it follows that if
∫∞

τ=−∞
|h(τ)|dτ<∞

then the output signal y(t ) is bounded as well

• If the impulse response is absolutely integrable (the action of the impulse
response is finite) then the output is bounded as well

• An LTI system is called BIBO stable if the impulse response is absolutely
integrable
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