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™ Linear and Time-Invariant Systems

We consider a system with a single input and a single output

Input signal: x(¢), output signal y (1)
Such systems are called SISO systems
SISO stands for Single Input Single Output

If a system has Multiple Inputs and Multiple Outputs it is called a MIMO
system

We restrict ourselves to SISO systems

Input Output
x(t) y(t)=S[x(1)]




™ Linear and Time-Invariant Systems

The action of the system on the input signal x(#) is described by the system
operator S

We write

y(1) = S{x(0)}

In this course we are particularly interested in systems that are Linear and
Time-Invariant

Such systems are called LTT systems




™ Linear and Time-Invariant Systems

e Linearity Suppose we have two input signals x; (#) and x»(#). Denote the
corresponding output signals by y; (#) and y» (#):

n@®=8{x1 (0} and yo(1) = S{x2 (1)}

The system is called linear it

y(1) = S{ax; (1) + Bx2 (1)}
= aS{x1 (1)} + BS{x2 (1)}
=ay1 () + py.(1)

for any two constants a and




™ Linear and Time-Invariant Systems

e Any linear combination of input signals produces the same linear combi-
nation of their corresponding output signals

e Taking 5 =0, it follows from the above definition that

y(@) = S{ax1 (D)} = aS{x1 (1)} = ay: ()

e In other words, if you scale the input signal by a factor a, the output signal
will scale with the same factor




™ Linear and Time-Invariant Systems

e Example Consider a SISO system with input signal x(#) and an output sig-
nal given by
1 A
y(1) = —j x(7t)dt + B,
T T=t-T
where B is a constant. Such a system is called a biased averager (can you
see why?)

e Scaling the input signal by a factor &, we obtain the output signal

a !
— [ x(t)dt + B,
I'Je=t-1

which is not equal to a y(f) unless B =0




™ Linear and Time-Invariant Systems

* The averager is nonlinear for B # 0

 For B =0, it is easy to see that a linear combination of input signals pro-

duces the same linear combination of the corresponding output signals

e The averager is linear for B=0
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 Time-Invariance Let y(7) be the output signal that corresponds to an in-
put signal x(1):
y(1) = S{x()}

e The system is called time-invariant if

y(t+1)=S{x(t+ 1)}

for any time shift 7 > 0

e In words: shifting your input signal produces an equally time-shifted out-
put signal
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™ Linear and Time-Invariant Systems

e Let the Dirac distribution be the input signal of an LTI system

e The corresponding output signal is written as h(f) and is called the im-
pulse response:

h(t) =S{6(1)}

e We claim that if you know the impulse response of an LTI system then you
know the response to any other input signal!
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™ Linear and Time-Invariant Systems

e To show this, let y(#) be the output signal that corresponds to an input
signal x(1):
y(1) = S{x()}

e Because of the sifting property of the Dirac distribution, we have

x(t) :j x(T)o(t—1)dt

=—00

e The right-hand side of the above expression can be seen as a continuous
weighted summation of shifted Dirac distributions
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™ Linear and Time-Invariant Systems

e Substitution gives

0. @)

X6 (1 —1) dr}

Y1) = S{f

T=—00

 Now note that S is linear and acts on functions that depend on time ¢

e This allows us to write

y(1) :f x(1)S{6(t— 1)} dr

=—00
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™ Linear and Time-Invariant Systems

e Since the system is time-invariant as well, we have

h(t—1)=S8{6(t—1)}

e and we arrive at

y(1) =f x(t)h(t—1)dT

=—00

 Knowing the impulse response h(t), we can determine the response y(f)
to any input signal x(¢) by evaluating the above integral
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™ Linear and Time-Invariant Systems

This integral is called a convolution integral
Short-hand notation:

y=xxh or y(t)=x(t)=*h(t)

The asterisk is called the convolution product

The output signal y(1) is equal to the convolution product of the input
signal x(#) and the impulse response /(1)
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™ Linear and Time-Invariant Systems

e For two real numbers a and b, we have

ab = ba

e The product of two real numbers commutes

e [s this also true for the convolution product? In other words, do we have

x*xh=h=*x?




16
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 The answer is yes. Let’s check it.

y(#)=xx*h

:f x(T)h(t—1) dTp =_Tf x(t—p)h(p)dp

=—00 p=—00

:f hip)x(t—p)dp=h=x*x

p=—00

e Conclusion: the convolution product of two signals commutes (due to the
minus sign in the argument of h)
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e If you change the minus sign into a plus sign you get what is called the
cross-correlation of the two signals x(f) and h(t) provided these signals
are both real-valued:

y(t):f x(t)h(t+1)dr=x%h

=—00

e The cross correlation of two signals does not commute

X*xh#hxx
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™ Linear and Time-Invariant Systems

For the product of real numbers, there exists an identity element called
“one" and written as 1 for which

What is the identity element for the convolution product?

We already know the answer to this question

It is the Dirac distribution!
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™ Linear and Time-Invariant Systems

 The convolution product is also associative, that is, for three signals u, v,
and w, we have (check this yourself)

(uxv)*w=ux*(v*w)
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™ Linear and Time-Invariant Systems

This property can be exploited to determine the total impulse function of
two LTT systems interconnected in cascade

System 1: input signal x(¢), impulse function /i (), output signal u()

System 2: input signal u(#), impulse function h» (#), output signal y ()

We assume that System 2 does not “load” System 1

(—')* h(t) F—— () — y(l)
X
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™ Linear and Time-Invariant Systems

e Response of the total system:

y:u*hgz(x*hl)*hZZX*(m*hz)ZX*h

e where we have introduced the impulse function of the total system as

hzhl*hzzhz*hl

e Note that since the convolution product of two signals commute, we can
interchange the order of the subsystems without affecting the output sig-
nal y(t) (provided both systems do not “load" each other)




22

™ Linear and Time-Invariant Systems

Computing the convolution integral: Example 1
We compute the convolution of the rectangular pulse p with itself

Recall that

(1 forO<t<1
p(t) =+

0 otherwise

By definition, we have

0@

y()=pxp= pT)p(t—1)dr

T=—00
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e Since p vanishes outside the interval (0, 1), the integral simplifies to

1
y(t) =f_0p(t—r) dr

e [tis convenient to rewrite this integral in such a way that the time coordi-
nate ¢ appears in the integration limits of the integral

e We use the substitution ¢’ = t — 7 to achieve this and arrive at

[
y(8) :f p(thdt
[

'=t-1

23
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™ Linear and Time-Invariant Systems

e Now observe that for ¢ < 0 we integrate over an interval outside the sup-
port of p. Consequently,

y()=0 fort<0

e Similarly, for £ —1 > 1 we again integrate over an interval outside the sup-
port of p. We have

y() =0 fort>2
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™ Linear and Time-Invariant Systems

e For 0 < t < 1 the lower bound falls outside of the support of p, while the
upper bound belongs to this support. We have

0 [ [
y(t):f = di'=¢ for0<t<1

t'=r-1 t'=0

| &

e Finally, for 1 < ¢ < 2 the upper bound falls outside of the support of p and
the lower bound is in the support of p. In this case, we have

1
y(t):f p(thdt + = di'=2-¢ forl<t<?2
A

'=t-1
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e Putting everything together, we find

y(1) = A7)

 The convolution of the rectangular pulse with itself produces the triangu-
lar pulse function
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™ Linear and Time-Invariant Systems

e Computing the convolution integral: Example 2

e We graphically determine the convolution of p(f) and p(¢/10) (we use the
blackboard for this)

e Finally, if the support of a signal x is (¢, u,) and the support of a signal h

is (¢, uy) then

the support of y(#) = x(t) * h(t) is (€5 + €y, Uy + up)

Verity this statement!
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™ Linear and Time-Invariant Systems

Another example:

0.5

nimation by Brian Amberg and adapted by Tinos (Wikipedia)
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™ Linear and Time-Invariant Systems

e Up till now we have been looking at fairly general systems whose action
on the input signal is described by some operator S

e Let us now be more specific and consider systems described by the linear
ordinary differential equation

dN—l

dN
anN —= +an-1
( drN drN-1

+..+a i+oz) (1) =
ldt 0|y —
dM dM—l

(bM— + bM—l dtM_l

d
P +...+bla+bo)x(t)

which holds for t > 0

e N and M are positive integers
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™ Linear and Time-Invariant Systems

x(t) is the prescribed input signal
y(t) is the desired output signal

To obtain the output signal y(#), we also need the N initial conditions

d*y ()
dek lr=0

y(0) and fork=1,2,....N—1

RLC circuits, mechanical systems, etc. can all be described by a differen-
tial equation of the above form
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™ Linear and Time-Invariant Systems

Further on we will show you how to solve the differential equation using
the Laplace transform

For now it suffices to say that the solution y(#) is given by

Y(8) = Yzs(£) + 5 (1)

¥2s(t) is called the zero-state response. This is the solution exclusively due
to the input with the initial conditions set to zero

Vi (t) is called the zero-input response. This is the solution exclusively due
to the initial conditions with the input set to zero




™ Linear and Time-Invariant Systems

e For vanishing initial conditions the system is linear and time-invariant
(LTD). This can easily be seen from the differential equation (check this
for yourself)

e In this case the zero-input response vanishes and the solution is equal to
the zero-state response

e For nonvanishing initial conditions, the system is no longer an LTT system

32
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™ Linear and Time-Invariant Systems

 Example. Consider a circuit consisting of a resistor of R in series with an
inductor L and a voltage source v(t) = Bu(t). The initial current in the
inductor is Iy. The input signal of the system is v(¢), the current i (#) in the
circuit is the output signal.

e From Kirchhoft’s voltage law:

LM +Ri(D=v{®) t>0
dt B

with initial condition i (0) = I

+
vity O i)
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™ Linear and Time-Invariant Systems

 The output signal is given by

1(1) = 175 (1) + 14i(1), >0

B
iZS(t):E(l—e_”T), i ()=Ie """, and T=L/R

e If we double the amplitude of the input signal then the output signal be-
comes

1(1) = 2155(1) + 15(2)

with i,.(f) and i,;(¢) as above



™ Linear and Time-Invariant Systems

e We observe that the output is not doubled, since i,i(¢) does not vanish

 However, for Iy = 0 (vanishing initial condition) we do have i,;(#) = 0 and

the output is doubled in this case

e With vanishing initial conditions, the system is linear
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™ Linear and Time-Invariant Systems

e A continuous-time system S is causal it

* whenever its input x(#) = 0, and there are no initial conditions, the
outputis y(¢) =0

* the output y(t) does not depend on future inputs

36
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™ Linear and Time-Invariant Systems

e An LTT system is causal if

h(t)=0 fort<0 (causal LTT system)

e Indeed, for an LTI system we have the convolution integral

y (1) =f x(T)h(t—-1)drt

——00

e and writing this integral as

[ o0
y (1) :f x(r)h(t—r)dr+f x(T)h(t—-T1)drt
T t

——00
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™ Linear and Time-Invariant Systems

we observe that in the second integral integration takes place over future
inputs

For a causal LTT system, these inputs cannot contribute to the output sig-
nal at time instant ¢

Consequently, for a causal system we must have h(f—7) =0for t <7 <00
or h(t)=0fort<0

In case the LTI system is causal we are left with

t
y(1) :f x(T)h(t—1)dt

=—00
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e Inaddition, if the input signal also vanishes prior to ¢ = 0, thatis, it x(¢) =0
for ¢ < 0, then the convolution integral simplifies even further. In this case
we have

t
y(t):f x(T)h(t—-T1)drt
7=0
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™ Linear and Time-Invariant Systems

Finally, we discuss the concept of BIBO stability

BIBO stands for Bounded Input Bounded Output

We are given a bounded input signal x(¢), that is, a signal that satisfies

lx(D))| <=M

for some positive M

We ask: Under what condition(s) is the output signal y(¢) also bounded?




™ Linear and Time-Invariant Systems

e To answer this question, consider

ly(8)| = f x(t—1)h(r)dT

=—00

Sf lx(t—1)||h(7)|dT

——00
0@

<M \h(T)|dT

T=—00
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™ Linear and Time-Invariant Systems

e From this inequality it follows that if

f |h(T)|dT < o0

=—00

then the output signal y(#) is bounded as well

e If the impulse response is absolutely integrable (the action of the impulse
response is finite) then the output is bounded as well

 An LTT system is called BIBO stable it the impulse response is absolutely
integrable
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