Signals and Systems

1. Standard Signals
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B Standard signals

e The Heaviside unit step function

{O fort<0
u(r) =

1 fort>0

e The step function can be used to model switch-on phenomena

e The step function u(—1t) can be used to model switch-off phenomena

u(?)




B Standard Signals

Oliver Heaviside
Born 1850
Died 1925



B Standard signals

e The sign or signum function

—1 fort<0
1 fort>0

sign(t) = {

e The sign function in terms of unit step functions

sign(t) =2u(t)—1 or sign(t) = u(t)— u(-1)

sign(?)




B Standard signals

e The rectangular pulse function

1 forO0<t<l1
p(t)={

0 otherwise

e The pulse function in terms of unit step functions

p(t) =u(t)—u(t—1)

Nl W
>—Af)



B Standard signals

e The ramp function

{t fort>0
r(t) =

0 otherwise
e The ramp function in terms of the unit step function

r(t) =tu(r)

(1)




B Standard signals

e The triangular pulse function

f

t for0<t<1
A)=<2—-t forl<it<?

0 otherwise

e The triangular pulse function in terms of ramp functions

At)=r)-2r(t—=1)+r(t-2)




B Standard signals

e The sinc function

, sin(mt)
S(t) =sinc(t) = reR
Tt

* Some properties:

- 5(0)=1

— S(n) =0, n anonzero integer

f S()de=1
t

=—00

— Integral:
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B Standard signals
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B FEven and odd signals

e A continuous-time signal x(1) is called even if

x(—t)=x(t) foralltelR

e A continuous-time signal x(1) is called odd if

x(—t)=—x(t) foralltelR
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B FEven and odd signals

e Asignal y(7) defined on the entire t-axis can be written as a superposition
of an even signal y.(f) and an odd signal y,(?):

Y1) = ye(t) + yo (1)

y()+y(=1) y()—y(=1)

2

Vel(l) = 5 and yo(f) =
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B FEnergy of a continuous-time signal

e The energy of a continuous-time signal x(#) is defined as

Ex:f 1x(0)|° dt
t

=—00

e A continuous-time signal x(¢) is called a finite-energy signal or square in-
tegrable if its energy is finite, that is, if

(0. @)

E,<oco or f Ix(t)lzdt<oo
t

=—00
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B The action of a continuous-time signal

e The integral

f |lx(2)|dt
[=—00

is sometimes called the action of the continuous-time signal x(#). If the
action is finite, that is, if

f |x(t)|dt < oo
t

=—00

the signal is called absolutely integrable
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B The power of a continuous-time signal

e The power of a continuous-time signal x(¢) is defined as

. 1 2
P, = lim _T_[ |x(8)|°dt

T—o0 ——T

e From this definition it immediately follows that a finite-energy signal has
Z€ero power:

x =0 {for afinite-energy signal x(1)
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B Periodic signals

A continuous-time signal x(#) is called periodic if there exists a T > 0 called
a period of x(t) such that

x(t+T)=x(t) foreveryteR

A period of a periodic signal is not unique

If T is a period, then 2T, 3T, ... are also periods of x(#)

The smallest period T of x(1) is called the fundamental period and is de-
noted as T

The fundamental period Ty is unique
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B Periodic signals

e Suppose we are given two periodic signals x(#) and y(#)

e Signal x(t) has a fundamental period Ty

e Signal y(t) has a fundamental period T;
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B Periodic signals

e Now consider the sum of these two periodic signals

z(t) = x(1) + y(¥)

e z(1) is periodic if M - T; periods of y(t) can be exactly included into N - T
periods of x(1)

e The fundamental period of z(#) is then the least common multiple of Ty
and T;
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B Periodic signals

e Example 1: x(¢) = sin(v/37¢t) and y(¢) = sin(wt). The signal z(¢) = x(1) +

y (1) is not periodic
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B Periodic signals

e Example 2: x(¢) = sin(xt) and y(f) = sin(3x¢). In this case Tp = 2 s and

T1 =2/3 sand z(t) is periodic. The fundamental period of z(¢) is 3T; = Tj.

1
' N
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B Energy and power of periodic signals

e Let x(#) denote a continuous-time periodic signal with fundamental pe-
riod Ty

e Since x(¢) is periodic, |x(t)|* is periodic as well and consequently Ej is

infinite

A periodic signal is an infinite energy signal

e What about the power?
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B Energy and power of periodic signals

e To answer this question, we first have another look at the energy integral

e Since we know that the signal is periodic with fundamental period T, we
compute the energy integral as follows

 First, consider the integral

to+NTj
EyY =f x(B?dt,
l':l'()—NTO

e where fj is an arbitrary fixed time instant and N a positive integer
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B Energy and power of periodic signals

e The length of the integration interval is 2N Ty and the energy and power of
the periodic signal follow as

1
Ex= lim EY and Py= lim ——EY
N—o0 N—-oo 2N 1y

e Using the periodicity of x(t), we find that

t()-l—TO

EN =2N x(0)]*dt
t:t()

e Clearly, E J(CN ) grows linearly in NV as N increases and the limit limpy_.o E J(CN )
does not exists (as claimed above)
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B Energy and power of periodic signals

e The power, however, does exist and is given by

1 1 to+ 1o

1x()|>dt

Py = lim ——
* N—oo 2N 1T o
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B The Dirac distribution

A distribution generalizes the classical concept of a function
Distributions are also known as generalized functions

Distributions were introduced by the Russian mathematician SERGEI SOBOLEV

in his work on second-order hyperbolic partial differential equations (loosely
speaking, differential equations that describe wave phenomena)

Distribution theory was developed further and extended by the French
mathematician LAURENT SCHWARTZ
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The Dirac distribution

Sergey Sobolev
Born 1908
Died 1989

Laurent Schwartz
Born 1915
Died 2002



B The Dirac distribution

 We only give a brief and informal introduction to distributions
e Much more on distribution theory can be found in

- A.H. ZEMANIAN, Distribution Theory and Transform Analysis — An

introduction to Generalized Functions, with Applications, Dover Pub-
lications, 2003

— M.]J. LIGHTHILL, An Introduction to Fourier Analysis and Generalised
Functions, Cambridge Monographs on Mechanics, 2008

27
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B The Dirac distribution

e Before discussing distributions, we first introduce the space of testing func-
tions Y

e The space of testing functions & consists of all complex-valued functions

@(t) that are infinitely smooth and vanish outside some finite interval

e Infinitely smooth means: can be differentiated an infinite number of times
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B The Dirac distribution

The finite interval (support) need not be the same for all testing functions™

The support of testing function ¢, () may be different from the support of
testing function @2 (1)

Example of a testing function:

r

exp(tz1 ) for |t <1

p(r) =+

0 for |t| =1

\

Recall that the support of a function f is the set of points in the domain of f
where f is nonzero
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B The Dirac distribution

In general, a functional is a rule that assigns a number to every element of
a certain set of functions

We take the space of testing functions & as this set and consider function-
als that assign a complex number to every element of &

In our case a functional is a rule that assigns a complex number to every
testing function in &

The number that a functional f assigns to a testing function ¢ is denoted

as (f, )
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B The Dirac distribution

 Example: Let f(¢) be an integrable function
* By this we mean integrable over every finite interval

e Corresponding to this function, we can define a functional f through the

integral

0@

(frp)=<f(1),p(1)) =f f(H@(t)dt = anumber

[=—0o0
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B The Dirac distribution

e Adistributionis a functional f with two additional properties

* Linearity:

(f,o1+@2)={f,p1)+{f,p2)

for any two testing functions ¢; and ¢» from ¥ and

(f,ap)=alf,p)

for any complex number «

* Continuity: For any set of testing functions {¢,}7> ; that converges in
2 to @, the sequence of numbers {{f, ¢} ; converges to (f, ¢)

e A distribution is a continuous linear functional on the space of testing
functions ¥
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B The Dirac distribution

e Up to this point we have associated a distribution f to an ordinary func-
tion f

e For example, with the function f(#) = p(t) we can associate the distribu-
tion

00 1
(p,P) =f p(He(r)dt = @(t)dt =anumber
[

=—00 =0

e Distributions associated with ordinary functions are called regular
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B The Dirac distribution

Let us now consider a distribution that assigns the value ¢(0) to a testing
function (1)

This distribution is written as 6 () and is called the Dirac distribution

By definition, we have

0(1), (1)) =(0)

In words: you take a testing function ¢(t) from 9. The Dirac distribution
assigns the value ¢(0) to this testing function
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B The Dirac distribution

e Using the integral, we have

0@

(0(1), (1)) =f o()p(r)dt = ¢(0)

[=—00
e No ordinary function has this property

e The Dirac distribution is an example of a singular distribution function




B The Dirac distribution

e We write f(#) = 6(¢) only symbolically (as if the Dirac distribution is an
ordinary function)

e The Dirac distribution is sometimes called the delta function, Dirac im-

pulse function, or simply impulse function

e The Dirac distribution is called the “stoot" in Dutch

5(f)

)

36
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The Dirac distribution

Paul Dirac
Born 1902
Died 1984

" GRAHAM FARMELD

D! oppil pagr-tamm . rewbron ceweg w Arbedue

THE HIDDEN LIFEOF  geenr
PAUL DIRAC, \

II!UHHTI.IH GENIUS "h

Biography
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B The Dirac distribution

e Consider the ordinary Gaussian (¢ > 0)

fe(t) = L e

Ve

e This function is normalized in the sense that

f fe(dt=1  foranye>0
‘

=—00
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B The Dirac distribution

 To this Gaussian function we can associate the regular distribution

(fe(0), (1)) :f_ fepnde = e o dr

e

e For “very small" values of €, we have

0@ 0. @)

1 2
(1), (1)) = —— “Clepn)de = @0 () dt = (0
(fe(D), (1)) N t:_ooe (1) @(0) t:_oof() ¢(0)

 and we may write

o (1) —llmfg(t)



40

B The Dirac distribution

e=1

~Q

e=1e-01
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B The Dirac distribution

e=1e-02

6
5_
4_
S
2
1+
O ] ] ] ]
-5 4 -3 2 1
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E.10F
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O | | | |
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B The Dirac distribution

e=1e-04

60
50 |-
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.30
20 |-
10
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~ QO ==

e=1e-05

150

§;100—
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B The Dirac distribution

e Clearly, we have

b 1 if0€e(a,b)

0 it0¢ (a,b)

I=a

5(t)dt={

e Also note that if 7 is expressed in seconds then the SI unit of the Dirac
distribution is s~

e If ¢ is expressed in meters (in this case we typically use the letter x instead
of 1) then the SI unit of the Dirac distribution is m™!




44

B The Dirac distribution

Another one that does the same job is

5(1) = lim S™@b

a— 00 Tt

Note that since nan 1 [
sin(a -
= — e dQ
Tt 2T JO=—a

we also have

1 [ .
5(1) = —f d2dO

27 OQ=—00

This latter relation is sometimes referred to as a completeness relation

The above expressions only make sense as distributions, of course
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B The Dirac distribution

Given a signal f () continuous at the origin
We claim that the two distributions f(#)0(¢) and f(0)6(f) are equal

In other words

F(@)o(r) = f(0)o(1)

We show this by working out the distributions on the left- and right-hand
side

Both distributions should produce the same number

Let’s start with the left-hand side
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B The Dirac distribution

0@

(f()o(1), (1)) =f f(Do) | dt

[=—00
(o)0)

:f S| f(De(n]dt
[

=—00

= f(0)p(0)
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B The Dirac distribution

e Now for the right-hand side:

oo

FOB(8), (1)) = f

= £(0)

e We conclude that our claim is correct

[ f(0)5(0)]p(r)dt

0. @)

[=—00

S de

[=—00

= f(0)¢(0)
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B The Dirac distribution

The shifted delta distribution 6 (¢ — fy) associates the number ¢(fy) to a
testing function (1)

We have
(0(t— 1), (1)) = p(tH)

or in terms of an integral

f O(t—tp)p(t)dt = (1)
5

=—00

This is sometimes called the sifting property of the Dirac distribution (zeefeigen-
schap van de Dirac distributie)




B The Dirac distribution

e For the shifted Dirac distribution we have

b rl if ty € (a, b)
O(t—ty)dt =+ .
I=a O lf t() ¢ (a, b)

\

 Moreover, for a signal f(#) continuous at ¢ =

f()o(t—ty) = f(tn)0 (& — top)

49
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B The Dirac distribution - scaling property

Let a be a nonzero real number

Scaling property of the Dirac distribution

Slat) = i(5(10
la|

We verify that these distributions are indeed equal

For the left-hand side we have

oo

(0(at),p(1)) :j O(at)p(t)dt

[=—00
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B The Dirac distribution - scaling property

e First consider the case a > 0. Setting T = at results in

0@

1 1
(O0(at),p(t)) = Ef O(T)p(t/a)dt = Ecp(O)

T=—00

e Next, consider the case a < 0. With T = at we now have

O(T)p(r/a)dr

1
(0(at),p(t)) = —f

T=00
0@

— —éf O(Me(t/a)dr

——00

_— (0)
— a(p
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B The Dirac distribution - scaling property

e Both cases (a > 0 and a < 0) can be combined as

1
(0(at),p(1)) = Hcp(o)

e For the right-hand side we obtain

1 © 1
(—0(1), (1)) =f |—5(t)(,0(l‘)dt
t

——oo | d|
©. @)

lal

= — Ot ) dt
al )i O

e and we conclude that the two distributions are equal
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B The Dirac distribution is even

e Special case: a = —1. We obtain

O(—1)=0(1)

e The Dirac distribution is even
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B The Dirac distribution - derivative of the unit step function

e Following the same verification procedure as above, we can also show that

du
— =0(t
P (1)

e The derivative of the unit step function is equal to the Dirac distribution!

e The unit step function is not differentiable at # = 0, of course, but it can be
differentiated in the sense of distributions




ole)

B The Dirac distribution - derivative of the unit step function

e We start with the left-hand side

du [ du . L de
<E,<p(t)>—ft ¢(t)dt—TlgI;Ou(t)¢(t) ft u(t) i d¢

e The first-term on the right-hand side of the above equation vanishes, since

a testing function has bounded support
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B The Dirac distribution - derivative of the unit step function

e We are left with

du Y d_(p B dp B
<dt,<p(t)>— f_ u(t)d dr = fmd dt = ¢(0) hm <p(T) ¢ (0)

e For the right-hand side we have (by definition)

0(1), (1)) =(0)

e and we conclude once again that the two given distributions are equal




B The Dirac distribution - derivative of the Dirac distribution

e The derivative of the Dirac distribution, denoted as &' (#), is defined as the

distribution that assigns the value —¢’(0) to a testing function ¢ belonging
to ¥:

(6" (1), (1)) = —¢'(0)

* Here, we use a prime to indicate a derivative (this is more or less standard
notation)

e Perhaps you are wondering why the derivative of 6 (1) is defined as above

of
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B The Dirac distribution - derivative of the Dirac distribution

e The reason is that we can now again manipulate with the Dirac distribu-
tion as if it is an ordinary function

°© db(r)

(0" (1), (1)) Zf:_ F(P(l‘)dt

= lim 5(0 ()| —f 5(1)
T—o00 r=—T

cp( )dt__(p o
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B The Dirac distribution - derivative of the Dirac distribution

The shifted derivative of the Dirac distribution is defined as

(6 (- 1g), (1)) = —¢'(tp)

Let f be a signal continuously differentiable at t =0

We have

f)8' () =—=f0)8() + f(0)5'(¢)

We verify the above statement
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B The Dirac distribution - derivative of the Dirac distribution

e [eft-hand side

0 0@

[f(t)é’(t)]w(t)dt=f ' [f(De®)]dt

I=—0o0
(0)0)

(f()6' (1), (D)) =f

[=—00

. r d
= lim 5(0) (1) (0 t:_T—ft 6(1) | f(Dp(n)]di

=—00

_ _f 6(t)[f’(t)(p(t)+f(t)(p'(t)] dt
4

=—00

=—f(0)p(0) - f(0)¢'(0)
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B The Dirac distribution - derivative of the Dirac distribution

e Right-hand side

(= O3+ f0)8' (1), (1)) = = f(0)(5(8), p(£)) + f(0)(S'(£), (1))

=—f'(0)p(0) - f(0)¢'(0)

e Conclusion: the two distributions are equal
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B The Dirac distribution - summary

Summary: Properties of the Dirac distribution

[P 6t -tp)dt = L i€ (a,b integrati ty
_ mntegrauon proper

f(no(t—ty) = f(t9)o(t— tp) f(t) continuous at t = fg

S(at) = =6(1) a € R\ {0}, scaling property

|al

% =6(1) derivative of the unit step function

f(o'(t)=—f 06+ f(0)06'(r)  f(r) continuously differentiable at r =0
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B The Dirac distribution - exercises

Exercise 1.1 Show that

gsi n(t) =26(1)
KA

Exercise 1.2 Show that

1
6(at+b):m6(t+b/a) a#0

Exercise 1.3 Determine

Answer: u(t)
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B The Dirac distribution - exercises

Exercise 1.4 Determine

t
f o(t)f(r)dr

=—00

Answer: f(0)u(t)

Exercise 1.5 Compute

f 5(0) f(t— 1) dt.
4

=—00

Answer: f(—1tp)

Exercise 1.6 Compute

Answer: (0
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B The Dirac distribution - exercises

Exercise 1.7 Sketch the signal
f(t) =sin(mt) u(r)

and compute f’(1).
Exercise 1.8 Sketch the signal
g(t) =cos(mt)u(r)

and compute g’(1).

Exercise 1.9 Compute p’(t), where p(t) is the rectangular pulse function. Sketch p(t)
and p'(1).

Exercise 1.10 Compute A’(#), where A(¢) is the triangular pulse function. Sketch A(¢)
and A (7).
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B The Dirac distribution - exercises

Exercise 1.11 Show that

Exercise 1.12 Plot the signal

f(t) =sign(t) —sign(r—1)

Exercise 1.13 Show that
t6' (1) = -6(1)

Exercise 1.14 Explain why

f 5'(Hdr=0
r

=—00




