
Signals and Systems 

1. Standard Signals
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Standard signals

• Standard signals

• Even and odd signals

• The energy and power of continuous-time signals

• Periodic signals

• The Dirac distribution

• The Heaviside unit step function

u(t ) =
{

0 for t < 0

1 for t > 0

• The step function can be used to model switch-on phenomena

• The step function u(−t ) can be used to model switch-off phenomena

• The sign or signum function

sign(t ) =
{
−1 for t < 0

1 for t > 0

• The sign function in terms of unit step functions

sign(t ) = 2u(t )−1 or sign(t ) = u(t )−u(−t )

• The rectangular pulse function

p(t ) =
{

1 for 0 < t < 1

0 otherwise

• The pulse function in terms of unit step functions

p(t ) = u(t )−u(t −1)
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Standard Signals

Oliver Heaviside
Born 1850
Died 1925
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Standard signals

• Standard signals

• Even and odd signals

• The energy and power of continuous-time signals

• Periodic signals

• The Dirac distribution

• The Heaviside unit step function

u(t ) =
{

0 for t < 0

1 for t > 0

• The step function can be used to model switch-on phenomena

• The step function u(−t ) can be used to model switch-off phenomena

• The sign or signum function

sign(t ) =
{
−1 for t < 0

1 for t > 0

• The sign function in terms of unit step functions

sign(t ) = 2u(t )−1 or sign(t ) = u(t )−u(−t )

• The rectangular pulse function

p(t ) =
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1 for 0 < t < 1

0 otherwise

• The pulse function in terms of unit step functions

p(t ) = u(t )−u(t −1)
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Standard signals

• The ramp function

r (t ) =
{

t for t > 0

0 otherwise

• The ramp function in terms of the unit step function

r (t ) = tu(t )

• The triangular pulse function

Λ(t ) =





t for 0 ≤ t ≤ 1

2− t for 1 < t ≤ 2

0 otherwise

• The triangular pulse function in terms of ramp functions

Λ(t ) = r (t )−2r (t −1)+ r (t −2)

• The sinc function

S(t ) = sinc(t ) = sin(πt )

πt
t ∈R

• Some properties:

– S(0) = 1

– S(n) = 0, n a nonzero integer

– Integral: ∫∞

t=−∞
S(t )dt = 1

r(t) 

t 

1 

1 0 

r(t)
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Standard signals

• The ramp function

r (t ) =
{

t for t > 0

0 otherwise

• The ramp function in terms of the unit step function

r (t ) = tu(t )

• The triangular pulse function

Λ(t ) =





t for 0 ≤ t ≤ 1

2− t for 1 < t ≤ 2

0 otherwise

• The triangular pulse function in terms of ramp functions

Λ(t ) = r (t )−2r (t −1)+ r (t −2)

• The sinc function

S(t ) = sinc(t ) = sin(πt )

πt
t ∈R
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Standard signals

• The ramp function

r (t ) =
{

t for t > 0

0 otherwise

• The ramp function in terms of the unit step function

r (t ) = tu(t )

• The triangular pulse function

Λ(t ) =





t for 0 ≤ t ≤ 1

2− t for 1 < t ≤ 2

0 otherwise

• The triangular pulse function in terms of ramp functions

Λ(t ) = r (t )−2r (t −1)+ r (t −2)

• The sinc function

S(t ) = sinc(t ) = sin(πt )
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Standard signals
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Even and odd signals

• A continuous-time signal x(t ) is called even if

x(−t ) = x(t ) for all t ∈R

• A continuous-time signal x(t ) is called odd if

x(−t ) =−x(t ) for all t ∈R

• A signal y(t ) defined on the entire t-axis can be written as a superposition
of an even signal ye(t ) and an odd signal yo(t ):

y(t ) = ye(t )+ yo(t )

with

ye(t ) = y(t )+ y(−t )

2
and yo(t ) = y(t )− y(−t )

2

• The energy of a continuous-time signal x(t ) is defined as

Ex =
∫∞

t=−∞
|x(t )|2 dt

• A continuous-time signal x(t ) is called a finite-energy signal or square in-
tegrable if its energy is finite, that is, if

Ex <∞ or
∫∞

t=−∞
|x(t )|2 dt <∞

• The integral ∫∞

t=−∞
|x(t )|dt

is sometimes called the action of the continuous-time signal x(t ). If the
action is finite, that is, if

∫∞

t=−∞
|x(t )|dt <∞

the signal is called absolutely integrable
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Even and odd signals

• A continuous-time signal x(t ) is called even if

x(−t ) = x(t ) for all t ∈R

• A continuous-time signal x(t ) is called odd if
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with
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Ex =
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t=−∞
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• A continuous-time signal x(t ) is called a finite-energy signal or square in-
tegrable if its energy is finite, that is, if

Ex <∞ or
∫∞

t=−∞
|x(t )|2 dt <∞

• The integral ∫∞
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Energy of a continuous-time signal

• A continuous-time signal x(t ) is called even if

x(−t ) = x(t ) for all t ∈R

• A continuous-time signal x(t ) is called odd if

x(−t ) =−x(t ) for all t ∈R

• A signal y(t ) defined on the entire t-axis can be written as a superposition
of an even signal ye(t ) and an odd signal yo(t ):

y(t ) = ye(t )+ yo(t )

with

ye(t ) = y(t )+ y(−t )

2
and yo(t ) = y(t )− y(−t )

2

• The energy of a continuous-time signal x(t ) is defined as

Ex =
∫∞

t=−∞
|x(t )|2 dt

• A continuous-time signal x(t ) is called a finite-energy signal or square in-
tegrable if its energy is finite, that is, if

Ex <∞ or
∫∞

t=−∞
|x(t )|2 dt <∞

• The integral ∫∞

t=−∞
|x(t )|dt

is sometimes called the action of the continuous-time signal x(t ). If the
action is finite, that is, if

∫∞

t=−∞
|x(t )|dt <∞

the signal is called absolutely integrable
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The action of a continuous-time signal

• A continuous-time signal x(t ) is called even if

x(−t ) = x(t ) for all t ∈R

• A continuous-time signal x(t ) is called odd if

x(−t ) =−x(t ) for all t ∈R

• A signal y(t ) defined on the entire t-axis can be written as a superposition
of an even signal ye(t ) and an odd signal yo(t ):

y(t ) = ye(t )+ yo(t )

with

ye(t ) = y(t )+ y(−t )

2
and yo(t ) = y(t )− y(−t )

2

• The energy of a continuous-time signal x(t ) is defined as

Ex =
∫∞

t=−∞
|x(t )|2 dt

• A continuous-time signal x(t ) is called a finite-energy signal or square in-
tegrable if its energy is finite, that is, if

Ex <∞ or
∫∞

t=−∞
|x(t )|2 dt <∞

• The integral ∫∞

t=−∞
|x(t )|dt

is sometimes called the action of the continuous-time signal x(t ). If the
action is finite, that is, if

∫∞

t=−∞
|x(t )|dt <∞

the signal is called absolutely integrable
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The power of a continuous-time signal

• The power of a continuous-time signal x(t ) is defined as

Px = lim
T→∞

1

2T

∫T

t=−T
|x(t )|2 dt

• From this definition it immediately follows that a finite-energy signal has
zero power:

Px = 0 for a finite-energy signal x(t )

• A continuous-time signal x(t ) is called periodic if there exists a T > 0 called
a period of x(t ) such that

x(t +T ) = x(t ) for every t ∈R

• A period of a periodic signal is not unique

• If T is a period, then 2T , 3T , ... are also periods of x(t )

• The smallest period T of x(t ) is called the fundamental period and is de-
noted as T0

• The fundamental period T0 is unique

• Suppose we are given two periodic signals x(t ) and y(t )

• Signal x(t ) has a fundamental period T0

• Signal y(t ) has a fundamental period T1

• Now consider the sum of these two periodic signals

z(t ) = x(t )+ y(t )

• z(t ) is periodic if M ·T1 periods of y(t ) can be exactly included into N ·T0

periods of x(t )

• The fundamental period of z(t ) is then the least common multiple of T0

and T1
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Periodic signals

• The power of a continuous-time signal x(t ) is defined as
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Periodic signals

• Example 1: x(t ) = sin(
�

3πt ) and y(t ) = sin(πt ). The signal z(t ) = x(t )+
y(t ) is not periodic

• Example 2: x(t ) = sin(πt ) and y(t ) = sin(3πt ). In this case T0 = 2 s and
T1 = 2/3 s and z(t ) is periodic. The fundamental period of z(t ) is 3T1 = T0.

• Let x(t ) denote a continuous-time periodic signal with fundamental pe-
riod T0

• Since x(t ) is periodic, |x(t )|2 is periodic as well and consequently Ex is
infinite

A periodic signal is an infinite energy signal

• What about the power?

• To answer this question, we first have another look at the energy integral

• Since we know that the signal is periodic with fundamental period T0, we
compute the energy integral as follows

• First, consider the integral

E (N )
x =

∫t0+N T0

t=t0−N T0

|x(t )|2 dt ,

• where t0 is an arbitrary fixed time instant and N a positive integer

• The length of the integration interval is 2N T0 and the energy and power of
the periodic signal follow as

Ex = lim
N→∞

E (N )
x and Px = lim

N→∞
1

2N T0
E (N )

x

• Using the periodicity of x(t ), we find that

E (N )
x = 2N

∫t0+T0

t=t0

|x(t )|2 dt

• Clearly, E (N )
x grows linearly in N as N increases and the limit limN→∞ E (N )

x

does not exists (as claimed above)

t
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Periodic signals
• Example 1: x(t ) = sin(

�
3πt ) and y(t ) = sin(πt ). The signal z(t ) = x(t )+

y(t ) is not periodic

• Example 2: x(t ) = sin(πt ) and y(t ) = sin(3πt ). In this case T0 = 2 s and
T1 = 2/3 s and z(t ) is periodic. The fundamental period of z(t ) is 3T1 = T0.
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Energy and power of periodic signals
• Example 1: x(t ) = sin(

�
3πt ) and y(t ) = sin(πt ). The signal z(t ) = x(t )+

y(t ) is not periodic

• Example 2: x(t ) = sin(πt ) and y(t ) = sin(3πt ). In this case T0 = 2 s and
T1 = 2/3 s and z(t ) is periodic. The fundamental period of z(t ) is 3T1 = T0.

• Let x(t ) denote a continuous-time periodic signal with fundamental pe-
riod T0

• Since x(t ) is periodic, |x(t )|2 is periodic as well and consequently Ex is
infinite

A periodic signal is an infinite energy signal

• What about the power?

• To answer this question, we first have another look at the energy integral

• Since we know that the signal is periodic with fundamental period T0, we
compute the energy integral as follows

• First, consider the integral

E (N )
x =
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|x(t )|2 dt ,

• where t0 is an arbitrary fixed time instant and N a positive integer

• The length of the integration interval is 2N T0 and the energy and power of
the periodic signal follow as

Ex = lim
N→∞

E (N )
x and Px = lim

N→∞
1

2N T0
E (N )

x

• Using the periodicity of x(t ), we find that

E (N )
x = 2N

∫t0+T0

t=t0

|x(t )|2 dt

• Clearly, E (N )
x grows linearly in N as N increases and the limit limN→∞ E (N )

x

does not exists (as claimed above)
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Energy and power of periodic signals

• Example 1: x(t ) = sin(
�

3πt ) and y(t ) = sin(πt ). The signal z(t ) = x(t )+
y(t ) is not periodic

• Example 2: x(t ) = sin(πt ) and y(t ) = sin(3πt ). In this case T0 = 2 s and
T1 = 2/3 s and z(t ) is periodic. The fundamental period of z(t ) is 3T1 = T0.
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Energy and power of periodic signals

• Example 1: x(t ) = sin(
�
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infinite
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• To answer this question, we first have another look at the energy integral

• Since we know that the signal is periodic with fundamental period T0, we
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N→∞

E (N )
x and Px = lim

N→∞
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x
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Energy and power of periodic signals

• The power, however, does exist and is given by

Px = lim
N→∞

1

2N T0
E (N )

x = 1

T0

∫t0+T0

t=t0

|x(t )|2 dt
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The Dirac distribution

• A distribution generalizes the classical concept of a function

• Distributions are also known as generalized functions

• Distributions were introduced by the Russian mathematician SERGEI SOBOLEV

in his work on second-order hyperbolic partial differential equations (loosely
speaking, differential equations that describe wave phenomena)

• Distribution theory was developed further and extended by the French
mathematician LAURENT SCHWARTZ

• We only give a brief and informal introduction to distributions

• Much more on distribution theory can be found in

– A.H. ZEMANIAN, Distribution Theory and Transform Analysis – An
introduction to Generalized Functions, with Applications, Dover Pub-
lications, 2003

– M.J. LIGHTHILL, An Introduction to Fourier Analysis and Generalised
Functions, Cambridge Monographs on Mechanics, 2008

• Before discussing distributions, we first introduce the space of testing func-
tions D

• The space of testing functions D consists of all complex-valued functions
ϕ(t ) that are infinitely smooth and vanish outside some finite interval

• Infinitely smooth means: can be differentiated an infinite number of times

• The finite interval (support) need not be the same for all testing functions∗

• The support of testing function ϕ1(t ) may be different from the support of
testing function ϕ2(t )

• Example of a testing function:

ϕ(t ) =




exp
(

1
t 2 −1

)
for |t | < 1

0 for |t | ≥ 1

* Recall that the support of a function f is the set of points in the domain of f

where f is nonzero
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The Dirac distribution

Sergey Sobolev
Born 1908
Died 1989

Laurent Schwartz
Born 1915
Died 2002
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The Dirac distribution
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The Dirac distribution

• A distribution generalizes the classical concept of a function

• Distributions are also known as generalized functions

• Distributions were introduced by the Russian mathematician SERGEI SOBOLEV

in his work on second-order hyperbolic partial differential equations (loosely
speaking, differential equations that describe wave phenomena)

• Distribution theory was developed further and extended by the French
mathematician LAURENT SCHWARTZ

• We only give a brief and informal introduction to distributions

• Much more on distribution theory can be found in

– A.H. ZEMANIAN, Distribution Theory and Transform Analysis – An
introduction to Generalized Functions, with Applications, Dover Pub-
lications, 2003

– M.J. LIGHTHILL, An Introduction to Fourier Analysis and Generalised
Functions, Cambridge Monographs on Mechanics, 2008
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The Dirac distribution

• In general, a functional is a rule that assigns a number to every element of
a certain set of functions

• We take the space of testing functions D as this set and consider function-
als that assign a complex number to every element of D

• In our case a functional is a rule that assigns a complex number to every
testing function in D

• The number that a functional f assigns to a testing function ϕ is denoted
as 〈 f ,ϕ〉

• Example: Let f (t ) be an integrable function

• By this we mean integrable over every finite interval

• Corresponding to this function, we can define a functional f through the
integral

〈 f ,ϕ〉 = 〈 f (t ),ϕ(t )〉 =
∫∞

t=−∞
f (t )ϕ(t )dt = a number
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The Dirac distribution
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The Dirac distribution

• A distribution is a functional f with two additional properties

* Linearity:

〈 f ,ϕ1 +ϕ2〉 = 〈 f ,ϕ1〉+〈 f ,ϕ2〉

for any two testing functions ϕ1 and ϕ2 from D and

〈 f ,αϕ〉 =α〈 f ,ϕ〉

for any complex number α

* Continuity: For any set of testing functions {ϕn}∞n=1 that converges in
D to ϕ, the sequence of numbers {〈 f ,ϕn〉}∞n=1 converges to 〈 f ,ϕ〉

• A distribution is a continuous linear functional on the space of testing
functions D

• Up to this point we have associated a distribution f to an ordinary func-
tion f

• For example, with the function f (t ) = p(t ) we can associate the distribu-
tion

〈p,ϕ〉 =
∫∞

t=−∞
p(t )ϕ(t )dt =

∫1

t=0
ϕ(t )dt = a number

• Distributions associated with ordinary functions are called regular

• Let us now consider a distribution that assigns the value ϕ(0) to a testing
function ϕ(t )

• This distribution is written as δ(t ) and is called the Dirac distribution

• By definition, we have

〈δ(t ),ϕ(t )〉 =ϕ(0)

• In words: you take a testing function ϕ(t ) from D. The Dirac distribution
assigns the value ϕ(0) to this testing function
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The Dirac distribution
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The Dirac distribution
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The Dirac distribution

• Using the integral, we have

〈δ(t ),ϕ(t )〉 =
∫∞

t=−∞
δ(t )ϕ(t )dt =ϕ(0)

• No ordinary function has this property

• The Dirac distribution is an example of a singular distribution function

• We write f (t ) = δ(t ) only symbolically (as if the Dirac distribution is an
ordinary function)

• The Dirac distribution is sometimes called the delta function, Dirac im-
pulse function, or simply impulse function

• The Dirac distribution is called the “stoot" in Dutch

• Consider the ordinary Gaussian (ε> 0)

fε(t ) = 1�
πε

e−t 2/ε

• This function is normalized in the sense that
∫∞

t=−∞
fε(t )dt = 1 for any ε> 0

• To this Gaussian function we can associate the regular distribution

〈 fε(t ),ϕ(t )〉 =
∫∞

t=−∞
fε(t )ϕ(t )dt = 1�

πε

∫∞

t=−∞
e−t 2/εϕ(t )dt

• For “very small" values of ε, we have

〈 fε(t ),ϕ(t )〉 = 1�
πε

∫∞

t=−∞
e−t 2/εϕ(t )dt ≈ϕ(0)

∫∞

t=−∞
fε(t )dt =ϕ(0)

• and we may write

δ(t ) = lim
ε↓0

fε(t ) = lim
ε↓0

1�
πε

e−t 2/ε
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The Dirac distribution
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The Dirac distribution
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The Dirac distribution

• Using the integral, we have
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The Dirac distribution
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The Dirac distribution
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The Dirac distribution
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The Dirac distribution

• Clearly, we have ∫b

t=a
δ(t )dt =

{
1 if 0 ∈ (a,b)

0 if 0 ∉ (a,b)

• Also note that if t is expressed in seconds then the SI unit of the Dirac
distribution is s−1

• If t is expressed in meters (in this case we typically use the letter x instead
of t ) then the SI unit of the Dirac distribution is m−1

• Another one that does the same job is

δ(t ) = lim
a→∞

sin(at )

πt

• Note that since
sin(at )

πt
= 1

2π

∫a

Ω=−a
e jΩt dΩ

we also have

δ(t ) = 1

2π

∫∞

Ω=−∞
e jΩt dΩ

• This latter relation is sometimes referred to as a completeness relation

• The above expressions only make sense as distributions, of course

• Given a signal f (t ) continuous at the origin

• We claim that the two distributions f (t )δ(t ) and f (0)δ(t ) are equal

• In other words

f (t )δ(t ) = f (0)δ(t )

• We show this by working out the distributions on the left- and right-hand
side

• Both distributions should produce the same number

• Let’s start with the left-hand side
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The Dirac distribution

• We have

〈 f (t )δ(t ),ϕ(t )〉 =
∫∞

t=−∞

[
f (t )δ(t )

]
ϕ(t )dt

=
∫∞

t=−∞
δ(t )

[
f (t )ϕ(t )

]
dt

= f (0)ϕ(0)

• Now for the right-hand side:

〈 f (0)δ(t ),ϕ(t )〉 =
∫∞

t=−∞

[
f (0)δ(t )

]
ϕ(t )dt

= f (0)
∫∞

t=−∞
δ(t )ϕ(t )dt

= f (0)ϕ(0)

• We conclude that our claim is correct

• The shifted delta distribution δ(t − t0) associates the number ϕ(t0) to a
testing function ϕ(t )

• We have
〈δ(t − t0),ϕ(t )〉 =ϕ(t0)

• or in terms of an integral

∫∞

t=−∞
δ(t − t0)ϕ(t )dt =ϕ(t0)

• This is sometimes called the sifting property of the Dirac distribution (zeefeigen-
schap van de Dirac distributie)
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The Dirac distribution
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The Dirac distribution
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The Dirac distribution

• For the shifted Dirac distribution we have

∫b

t=a
δ(t − t0)dt =

{
1 if t0 ∈ (a,b)

0 if t0 ∉ (a,b)

• Moreover, for a signal f (t ) continuous at t = t0

f (t )δ(t − t0) = f (t0)δ(t − t0)

• Let a be a nonzero real number

• Scaling property of the Dirac distribution

δ(at ) = 1

|a|δ(t )

• We verify that these distributions are indeed equal

• For the left-hand side we have

〈δ(at ),ϕ(t )〉 =
∫∞

t=−∞
δ(at )ϕ(t )dt

• First consider the case a > 0. Setting τ= at results in

〈δ(at ),ϕ(t )〉 = 1

a

∫∞

τ=−∞
δ(τ)ϕ(τ/a)dτ= 1

a
ϕ(0)

• Next, consider the case a < 0. With τ= at we now have

〈δ(at ),ϕ(t )〉 = 1

a

∫−∞

τ=∞
δ(τ)ϕ(τ/a)dτ

=− 1

a

∫∞

τ=−∞
δ(τ)ϕ(τ/a)dτ

=− 1

a
ϕ(0)
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The Dirac distribution - scaling property

• For the shifted Dirac distribution we have
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The Dirac distribution - scaling property
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a
ϕ(0)
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The Dirac distribution - scaling property

• Both cases (a > 0 and a < 0) can be combined as

〈δ(at ),ϕ(t )〉 = 1

|a|ϕ(0)

• For the right-hand side we obtain

〈 1

|a|δ(t ),ϕ(t )〉 =
∫∞

t=−∞
1

|a|δ(t )ϕ(t )dt

= 1

|a|
∫∞

t=−∞
δ(t )ϕ(t )dt

= 1

|a|ϕ(0)

• and we conclude that the two distributions are equal

• Special case: a =−1. We obtain

δ(−t ) = δ(t )

• The Dirac distribution is even

• Following the same verification procedure as above, we can also show that

du

dt
= δ(t )

• The derivative of the unit step function is equal to the Dirac distribution!

• The unit step function is not differentiable at t = 0, of course, but it can be
differentiated in the sense of distributions
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The Dirac distribution is even

• Both cases (a > 0 and a < 0) can be combined as

〈δ(at ),ϕ(t )〉 = 1

|a|ϕ(0)

• For the right-hand side we obtain

〈 1

|a|δ(t ),ϕ(t )〉 =
∫∞

t=−∞
1

|a|δ(t )ϕ(t )dt

= 1

|a|
∫∞

t=−∞
δ(t )ϕ(t )dt

= 1

|a|ϕ(0)

• and we conclude that the two distributions are equal

• Special case: a =−1. We obtain

δ(−t ) = δ(t )

• The Dirac distribution is even

• Following the same verification procedure as above, we can also show that

du

dt
= δ(t )

• The derivative of the unit step function is equal to the Dirac distribution!

• The unit step function is not differentiable at t = 0, of course, but it can be
differentiated in the sense of distributions
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The Dirac distribution - derivative of the unit step function

• Both cases (a > 0 and a < 0) can be combined as

〈δ(at ),ϕ(t )〉 = 1

|a|ϕ(0)

• For the right-hand side we obtain

〈 1

|a|δ(t ),ϕ(t )〉 =
∫∞

t=−∞
1

|a|δ(t )ϕ(t )dt

= 1

|a|
∫∞

t=−∞
δ(t )ϕ(t )dt

= 1

|a|ϕ(0)

• and we conclude that the two distributions are equal

• Special case: a =−1. We obtain

δ(−t ) = δ(t )

• The Dirac distribution is even

• Following the same verification procedure as above, we can also show that

du

dt
= δ(t )

• The derivative of the unit step function is equal to the Dirac distribution!

• The unit step function is not differentiable at t = 0, of course, but it can be
differentiated in the sense of distributions
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The Dirac distribution - derivative of the unit step function

• We start with the left-hand side

〈du

dt
,ϕ(t )〉 =

∫∞

t=−∞
du

dt
ϕ(t )dt = lim

T→∞
u(t )ϕ(t )

∣∣∣T

t=−T
−

∫∞

t=−∞
u(t )

dϕ

dt
dt

• The first-term on the right-hand side of the above equation vanishes, since
a testing function has bounded support

• We are left with

〈du

dt
,ϕ(t )〉 =−

∫∞

t=−∞
u(t )

dϕ

dt
dt =−

∫∞

t=0

dϕ

dt
dt =ϕ(0)− lim

T→∞
ϕ(T ) =ϕ(0)

• For the right-hand side we have (by definition)

〈δ(t ),ϕ(t )〉 =ϕ(0)

• and we conclude once again that the two given distributions are equal

• The derivative of the Dirac distribution, denoted as δ′(t ), is defined as the
distribution that assigns the value −ϕ′(0) to a testing function ϕ belonging
to D:

〈δ′(t ),ϕ(t )〉 =−ϕ′(0)

• Here, we use a prime to indicate a derivative (this is more or less standard
notation)

• Perhaps you are wondering why the derivative of δ(t ) is defined as above

• The reason is that we can now again manipulate with the Dirac distribu-
tion as if it is an ordinary function

〈δ′(t ),ϕ(t )〉 =
∫∞

t=−∞
dδ(t )

dt
ϕ(t )dt

= lim
T→∞

δ(t )ϕ(t )
∣∣∣T

t=−T
−

∫∞

t=−∞
δ(t )

dϕ(t )

dt
dt =−ϕ′(0)
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The Dirac distribution - derivative of the unit step function

• We start with the left-hand side

〈du

dt
,ϕ(t )〉 =

∫∞

t=−∞
du

dt
ϕ(t )dt = lim

T→∞
u(t )ϕ(t )

∣∣∣T

t=−T
−

∫∞

t=−∞
u(t )

dϕ

dt
dt

• The first-term on the right-hand side of the above equation vanishes, since
a testing function has bounded support

• We are left with

〈du

dt
,ϕ(t )〉 =−

∫∞

t=−∞
u(t )

dϕ

dt
dt =−

∫∞

t=0

dϕ

dt
dt =ϕ(0)− lim

T→∞
ϕ(T ) =ϕ(0)

• For the right-hand side we have (by definition)

〈δ(t ),ϕ(t )〉 =ϕ(0)

• and we conclude once again that the two given distributions are equal

• The derivative of the Dirac distribution, denoted as δ′(t ), is defined as the
distribution that assigns the value −ϕ′(0) to a testing function ϕ belonging
to D:

〈δ′(t ),ϕ(t )〉 =−ϕ′(0)

• Here, we use a prime to indicate a derivative (this is more or less standard
notation)

• Perhaps you are wondering why the derivative of δ(t ) is defined as above

• The reason is that we can now again manipulate with the Dirac distribu-
tion as if it is an ordinary function

〈δ′(t ),ϕ(t )〉 =
∫∞

t=−∞
dδ(t )

dt
ϕ(t )dt

= lim
T→∞

δ(t )ϕ(t )
∣∣∣T

t=−T
−

∫∞

t=−∞
δ(t )

dϕ(t )

dt
dt =−ϕ′(0)
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The Dirac distribution - derivative of the Dirac distribution

• We start with the left-hand side

〈du

dt
,ϕ(t )〉 =

∫∞

t=−∞
du

dt
ϕ(t )dt = lim

T→∞
u(t )ϕ(t )

∣∣∣T

t=−T
−

∫∞

t=−∞
u(t )

dϕ

dt
dt

• The first-term on the right-hand side of the above equation vanishes, since
a testing function has bounded support

• We are left with

〈du

dt
,ϕ(t )〉 =−

∫∞

t=−∞
u(t )

dϕ

dt
dt =−

∫∞

t=0

dϕ

dt
dt =ϕ(0)− lim

T→∞
ϕ(T ) =ϕ(0)

• For the right-hand side we have (by definition)

〈δ(t ),ϕ(t )〉 =ϕ(0)

• and we conclude once again that the two given distributions are equal

• The derivative of the Dirac distribution, denoted as δ′(t ), is defined as the
distribution that assigns the value −ϕ′(0) to a testing function ϕ belonging
to D:

〈δ′(t ),ϕ(t )〉 =−ϕ′(0)

• Here, we use a prime to indicate a derivative (this is more or less standard
notation)

• Perhaps you are wondering why the derivative of δ(t ) is defined as above

• The reason is that we can now again manipulate with the Dirac distribu-
tion as if it is an ordinary function

〈δ′(t ),ϕ(t )〉 =
∫∞

t=−∞
dδ(t )

dt
ϕ(t )dt

= lim
T→∞

δ(t )ϕ(t )
∣∣∣T

t=−T
−

∫∞

t=−∞
δ(t )

dϕ(t )

dt
dt =−ϕ′(0)
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The Dirac distribution - derivative of the Dirac distribution

• We start with the left-hand side

〈du

dt
,ϕ(t )〉 =

∫∞

t=−∞
du

dt
ϕ(t )dt = lim

T→∞
u(t )ϕ(t )

∣∣∣T

t=−T
−

∫∞

t=−∞
u(t )

dϕ

dt
dt

• The first-term on the right-hand side of the above equation vanishes, since
a testing function has bounded support

• We are left with

〈du

dt
,ϕ(t )〉 =−

∫∞

t=−∞
u(t )

dϕ

dt
dt =−

∫∞

t=0

dϕ

dt
dt =ϕ(0)− lim

T→∞
ϕ(T ) =ϕ(0)

• For the right-hand side we have (by definition)

〈δ(t ),ϕ(t )〉 =ϕ(0)

• and we conclude once again that the two given distributions are equal

• The derivative of the Dirac distribution, denoted as δ′(t ), is defined as the
distribution that assigns the value −ϕ′(0) to a testing function ϕ belonging
to D:

〈δ′(t ),ϕ(t )〉 =−ϕ′(0)

• Here, we use a prime to indicate a derivative (this is more or less standard
notation)

• Perhaps you are wondering why the derivative of δ(t ) is defined as above

• The reason is that we can now again manipulate with the Dirac distribu-
tion as if it is an ordinary function

〈δ′(t ),ϕ(t )〉 =
∫∞

t=−∞
dδ(t )

dt
ϕ(t )dt

= lim
T→∞

δ(t )ϕ(t )
∣∣∣T

t=−T
−

∫∞

t=−∞
δ(t )

dϕ(t )

dt
dt =−ϕ′(0)

58



The Dirac distribution - derivative of the Dirac distribution

• The shifted derivative of the Dirac distribution is defined as

〈δ′(t − t0),ϕ(t )〉 =−ϕ′(t0)

• Let f be a signal continuously differentiable at t = 0

• We have

f (t )δ′(t ) =− f ′(0)δ(t )+ f (0)δ′(t )

• We verify the above statement

• Left-hand side

〈 f (t )δ′(t ),ϕ(t )〉 =
∫∞

t=−∞

[
f (t )δ′(t )

]
ϕ(t )dt =

∫∞

t=−∞
δ′(t )

[
f (t )ϕ(t )

]
dt

= lim
T→∞

δ(t ) f (t )ϕ(t )
∣∣∣T

t=−T
−

∫∞

t=−∞
δ(t )

d

dt

[
f (t )ϕ(t )

]
dt

=−
∫∞

t=−∞
δ(t )

[
f ′(t )ϕ(t )+ f (t )ϕ′(t )

]
dt

=− f ′(0)ϕ(0)− f (0)ϕ′(0)

• Right-hand side

〈− f ′(0)δ(t )+ f (0)δ′(t ),ϕ(t )〉 =− f ′(0)〈δ(t ),ϕ(t )〉+ f (0)〈δ′(t ),ϕ(t )〉
=− f ′(0)ϕ(0)− f (0)ϕ′(0)

• Conclusion: the two distributions are equal
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The Dirac distribution - derivative of the Dirac distribution

• The shifted derivative of the Dirac distribution is defined as

〈δ′(t − t0),ϕ(t )〉 =−ϕ′(t0)

• Let f be a signal continuously differentiable at t = 0

• We have

f (t )δ′(t ) =− f ′(0)δ(t )+ f (0)δ′(t )

• We verify the above statement

• Left-hand side

〈 f (t )δ′(t ),ϕ(t )〉 =
∫∞

t=−∞

[
f (t )δ′(t )

]
ϕ(t )dt =

∫∞

t=−∞
δ′(t )

[
f (t )ϕ(t )

]
dt

= lim
T→∞

δ(t ) f (t )ϕ(t )
∣∣∣T

t=−T
−

∫∞

t=−∞
δ(t )

d

dt

[
f (t )ϕ(t )

]
dt

=−
∫∞

t=−∞
δ(t )

[
f ′(t )ϕ(t )+ f (t )ϕ′(t )

]
dt

=− f ′(0)ϕ(0)− f (0)ϕ′(0)

• Right-hand side

〈− f ′(0)δ(t )+ f (0)δ′(t ),ϕ(t )〉 =− f ′(0)〈δ(t ),ϕ(t )〉+ f (0)〈δ′(t ),ϕ(t )〉
=− f ′(0)ϕ(0)− f (0)ϕ′(0)

• Conclusion: the two distributions are equal
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The Dirac distribution - derivative of the Dirac distribution

• The shifted derivative of the Dirac distribution is defined as

〈δ′(t − t0),ϕ(t )〉 =−ϕ′(t0)

• Let f be a signal continuously differentiable at t = 0

• We have

f (t )δ′(t ) =− f ′(0)δ(t )+ f (0)δ′(t )

• We verify the above statement

• Left-hand side

〈 f (t )δ′(t ),ϕ(t )〉 =
∫∞

t=−∞

[
f (t )δ′(t )

]
ϕ(t )dt =

∫∞

t=−∞
δ′(t )

[
f (t )ϕ(t )

]
dt

= lim
T→∞

δ(t ) f (t )ϕ(t )
∣∣∣T

t=−T
−

∫∞

t=−∞
δ(t )

d

dt

[
f (t )ϕ(t )

]
dt

=−
∫∞

t=−∞
δ(t )

[
f ′(t )ϕ(t )+ f (t )ϕ′(t )

]
dt

=− f ′(0)ϕ(0)− f (0)ϕ′(0)

• Right-hand side

〈− f ′(0)δ(t )+ f (0)δ′(t ),ϕ(t )〉 =− f ′(0)〈δ(t ),ϕ(t )〉+ f (0)〈δ′(t ),ϕ(t )〉
=− f ′(0)ϕ(0)− f (0)ϕ′(0)

• Conclusion: the two distributions are equal
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The Dirac distribution - summary

Summary: Properties of the Dirac distribution

∫b
t=a δ(t − t0)dt =

{
1 if t0 ∈ (a,b)

0 if t0 ∉ (a,b)
integration property

f (t )δ(t − t0) = f (t0)δ(t − t0) f (t ) continuous at t = t0

δ(at ) = 1
|a|δ(t ) a ∈R\ {0}, scaling property

du
dt = δ(t ) derivative of the unit step function

f (t )δ′(t ) =− f ′(0)δ(t )+ f (0)δ′(t ) f (t ) continuously differentiable at t = 0
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The Dirac distribution - exercises

Exercise 1.1 Show that
d

dt
sign(t ) = 2δ(t )

Exercise 1.2 Show that

δ(at +b) = 1

|a|δ(t +b/a) a �= 0

Exercise 1.3 Determine ∫t

τ=−∞
δ(τ)dτ

Answer: u(t )

Exercise 1.4 Determine ∫t

τ=−∞
δ(τ) f (τ)dτ

Answer: f (0)u(t )

Exercise 1.5 Compute ∫∞

t=−∞
δ(t ) f (t − t0)dt .

Answer: f (−t0)

Exercise 1.6 Compute ∫∞

t=−∞
δ(t )t dt .

Answer: 0

Exercise 1.7 Sketch the signal
f (t ) = sin(πt )u(t )

and compute f ′(t ).

Exercise 1.8 Sketch the signal
g (t ) = cos(πt )u(t )

and compute g ′(t ).

Exercise 1.9 Compute p ′(t ), where p(t ) is the rectangular pulse function. Sketch p(t )
and p ′(t ).

Exercise 1.10 Compute Λ′(t ), where Λ(t ) is the triangular pulse function. Sketch Λ(t )
and Λ′(t ).
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The Dirac distribution - exercises

Exercise 1.1 Show that
d

dt
sign(t ) = 2δ(t )

Exercise 1.2 Show that

δ(at +b) = 1

|a|δ(t +b/a) a �= 0

Exercise 1.3 Determine ∫t

τ=−∞
δ(τ)dτ

Answer: u(t )

Exercise 1.4 Determine ∫t

τ=−∞
δ(τ) f (τ)dτ

Answer: f (0)u(t )

Exercise 1.5 Compute ∫∞

t=−∞
δ(t ) f (t − t0)dt .

Answer: f (−t0)

Exercise 1.6 Compute ∫∞

t=−∞
δ(t )t dt .

Answer: 0

Exercise 1.7 Sketch the signal
f (t ) = sin(πt )u(t )

and compute f ′(t ).

Exercise 1.8 Sketch the signal
g (t ) = cos(πt )u(t )

and compute g ′(t ).

Exercise 1.9 Compute p ′(t ), where p(t ) is the rectangular pulse function. Sketch p(t )
and p ′(t ).

Exercise 1.10 Compute Λ′(t ), where Λ(t ) is the triangular pulse function. Sketch Λ(t )
and Λ′(t ).
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The Dirac distribution - exercises

Exercise 1.1 Show that
d

dt
sign(t ) = 2δ(t )

Exercise 1.2 Show that

δ(at +b) = 1

|a|δ(t +b/a) a �= 0

Exercise 1.3 Determine ∫t

τ=−∞
δ(τ)dτ

Answer: u(t )

Exercise 1.4 Determine ∫t

τ=−∞
δ(τ) f (τ)dτ

Answer: f (0)u(t )

Exercise 1.5 Compute ∫∞

t=−∞
δ(t ) f (t − t0)dt .

Answer: f (−t0)

Exercise 1.6 Compute ∫∞

t=−∞
δ(t )t dt .

Answer: 0

Exercise 1.7 Sketch the signal
f (t ) = sin(πt )u(t )

and compute f ′(t ).

Exercise 1.8 Sketch the signal
g (t ) = cos(πt )u(t )

and compute g ′(t ).

Exercise 1.9 Compute p ′(t ), where p(t ) is the rectangular pulse function. Sketch p(t )
and p ′(t ).

Exercise 1.10 Compute Λ′(t ), where Λ(t ) is the triangular pulse function. Sketch Λ(t )
and Λ′(t ).

65



The Dirac distribution - exercises

Exercise 1.11 Show that
d

dt
|t | = sign(t )

Exercise 1.12 Plot the signal

f (t ) = sign(t )− sign(t −1)

Exercise 1.13 Show that
tδ′(t ) =−δ(t )

Exercise 1.14 Explain why ∫∞

t=−∞
δ′(t )dt = 0
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