Exercises Ch.11 DTFT

Exercise 1 — taken from Chaparro (first edition)

Computations from definition of DTFT and IDTFT

Consider the discrete-time signal x[n] = 0.5/7|, and find its DTFT X(e/?). From the direct and the inverse
DTEFT of x|n]:

(a) Determine the infinite sum

00
Z 0.5/7l
k=—o00

(b) Find the integral

b 4
/ X(e!?)dw
—T

(¢) Find the phase of X(e/?).
(d) Determine the sum

o0
3 (—1)"0.5M7l
k=—00
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answer

Pr. 10.3 As shown in Example 1, when a = 0.5 the DTFT of z[n] = 0.5/"! is

3/4
5/4 — cos(w)

X (%) =

(a) If we let w = 0 then

X(1) = 5/i/i1 =3=;m[n]

(b) The inverse DTFT is
1 " Wy _Jwn

if we let n = 0 we get that

i X (e’)dw = z[0]
27 J_ .

and so the given integral is 27z[0] = 2.
(c) From the DTFT, X (&’“) is real and since the denominator, i.e., 5/4 — cos(w), is positive for [—, 7) the
phase < X (%) = 0.
(d) If we let w = 7 in the DTFT we obtain
- o 3/4 1
> alnl =" =X (™) =572 = 5
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Exercise 2

Duality of DTFT
The DTFT of a discrete-time signal x|n] is given as

X(@?) = 45w — 0.57) + e 7/ 45(w + 0.57) — 2me 7/85(w — 0.71) — 2me/™/85(w + 0.71)

(a) Isthe signal x|n] periodic? If so, indicate its period.
(b) Determine the signal x[n], and verify your answer above.
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answer

Pr. 10.5 (a) This is the DFT of two sinusoids one of frequency 0.57 rad. and the other 0.71 rad., the ratio of

these frequencies is not a rational number (because of 7) so z[rn] is not periodic.
(b) The signal is

1
z[n] = —cos(0.57n + 7 /4) — 2cos(0.71n — 7/8)
o
To verify this, express

l‘[n] — 10.5(8_7'(0.571'71-{-71'/4) + e—j(0.57rn-+7r/4)) — 2% 0.5(ej(0.717rn—ﬂ'/8) + e—j(0.7l7rn—7r/4))
m
an using that the DTFT of €’“°™ is 2w (w — wp) we get

X(&%) = ™1§(w — 0.57) + e 7§ (w + 0.57) — 27(e 7 7™/B5(w — 0.71) + /%5 (w + 0.71)
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Exercise 3

Sinusoidal form of DTFT
A triangular pulse is given by

3—n 0<n<?2

34n —-2<n<-1
t[n] —
0 otherwise

(a) The pulse can be written as

oo
tln] = Z Apdln — k|
k=—o0

Find the {A}} coefficients.
(b) Find a sinusoidal expression for the DTFT of t[n]—that is,

o0
T(e!) = By + Z Bj, cos(kw)
k=1

Express the coefficients Bg and By, in terms of the A, coefficients.

26-Dec-17 14 dtft exercises



Exercises Ch.11 DTFT

answer

Pr. 10.14 (a) A, = 3 — |k|, for —2 < k < 2, 0 otherwise.
(b) Writing

2
tin] = > (3— |k])d[n— k]

k=-2

2
= 30[n]+ Y (3—k)(O[n+ k] + d[n — k])
k=1

with a Z-transform

T(z)=3+ 2(3 —k)(zF+z7F)
k=1

so that the DTFT is

2
T(e) = 3+ (3—k)[e?F + e 7¥]

k=1

2
= 3 _+)> 2(3—k)cos(kw)
Bo k=1 BIL-
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Exercise 4

Computations from DTFT definition
For simple signals it is possible to obtain some information on their DTFTs without computing them. Let

x|n] = é[n] + 28|n — 1] + 38[n — 2| + 28[n — 3] + 3|n — 4]

(a) Find X(e/?) and X(e/™) without computing the DTFT X (/).
(b) Find

I
f IX(e/)|2dw
-

(c) Find the phase of X(e/?). Is it linear?
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answer

Pr. 10.16 (a) Using

we have

(b) By Parseval’s result

we get that

26-Dec-17

o0

X (e?) = Z x[n]e—Im
X () = i zn]=1+2+3+2+1=9

X (™) = i (-1)"z[n]=1-24+3-2+1=1

n——0oo

— [ X (@) Pdw = 3 |zfn]?

2w J_ .

/ 1 X (e?)?dw =27(1+4+9+4+1) =38
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(c) The z-transform of z[n] is

X(z)=1+22""+322+22 % + 27 =222 + 22 + 3+ 2271 + 277

and the DTFT is

X (%) = e

3 + 2cos(w) + 4 cos(2w)

—

—

"

real-valued

-

so that the phase is —2w when above term is positive and —2w + 7 when negative.

] ] R A SR
- -5
P e . - .
10|+ = e e
- ; ; ;
= RN _15L1 1 ] ] 1 1 1
3 -2 -1 0 1 2 3
w
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Exercise 5

DTFT and Z-transform—MATLAB

Let x|n] = r|n] — r[n — 3] — u|n — 3] where r|n] is the ramp signal.

(a) Carefully plot x[n] and find its Z-transform X(z).

(b) Ify|n] = x|—n], give Y(z) in terms of X(z).

(c) Use the above results to find the DTFT of x|n], x|—n], and x[n] + x| —n]. Find the magnitude of each
of these DTFTs and then use MATLAB to compute them and plot them.
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answer

Pr. 10.15 (a) The signal xz[n] can be written as

0 n<O0
z[n] = n n=012
0 n>3

or z[n] = 8[n — 1] + 28[n — 2]; its Z-transform is
X(z)=2z"1+2272
(b) y[n] = z[—n] = é[n + 1] + 26[n + 2] so that
Y(z)=X(z7') =2+ 227
(c) The DTFTs of z[n], y[n] = z[—n] and z[n] = z[n] + x[—n] are from the above

X(e?¥) = €77 4 277
Y () = 3 + 267%
Z(e7%) = 2 cos(w) + 4 cos(2w)
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To compute their magnitude we consider

1 X (e7))? = X (7)Y (e7%) =1+ 2e 7% + 27 + 4 = 5 + 4 cos(w)
N’

X(e“'j“’)

so that | X (¢’“)| = /5 + 4 cos(w). We then have that

Y (2)* =Y () X()
N, e’

Y (e iw)
so that |Y (e’“)| = | X (¢’*)|. Finally,
|Z(e7“)| = |2 cos(w) + 4 cos(2w)|

because it is real.
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Exercise 6

DTFT of even and odd functions
A signal
x[n] = 0.5"u|n]

is neither even nor odd.

(a) Find the even x,[n] and the odd x,[n] components of x[n], and carefully plot them. .

(b) Find the Z-transforms of x.[n] and x,|n], and from them find the DFTs X.(e/*) and X,(e!?). Are they
real or imaginary? . _ _

(c) Since x[n] = x¢[n] + xo[n] so that X(e!”) = Xe(e)?) + Xo(e/*), how dos the real and the imaginary
parts of X(e!®) relate to Xq(e/*) and X,(e’”)? Explain.

(d) Use Parseval’s result to obtain that E, = E,, + E, 1.€, the energy of the signal is the sum of the
energies of its even and odd components.

26-Dec-17 14 dtft exercises 13



Exercises Ch.11 DTFT

answer

Pr. 10.17(a)-(c)The even and odd components of z[n]| are

z.[n] = 0.5(z[n] + z[—n])
zo[n] = 0.5(z[n] — z[—n])

and so their DTFTs are

X, (e7%) = 0.5[X (%) + X (e77¥)]
Xo(e7¥) = 0.5[X (%) — X (e77%)]

The Z-transform of x[n] = 0.5™u[n] is X (z) = 1/(1 — 0.5z~!) and its region of convergence include the
unit circle. So the DTFT is

X(e) = 1 - 1 —0.5e7
1 —-05e7%  (1—0.5e3%)(1 — 0.5e7%)
(1—-0.5c08(w)) . —0.5sin(w)

1.25 — cos(w) I 1.25 — cos(w)

real}art imagin;ry part
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(c) The DTFTs of z.[n] and :z:oTn] are

: 0.5 0.5 0.5(2 — cos(w))
Xe(e') = . — =
(") 1 —0.5e—% * 1 —0.5e7% 1.25 — cos(w)
Xy _ 05 05 _ —05jsin(w)
1—05e3% 1—05e%  1.25— cos(w)

where the top one is real and the second imaginary. So that X, (e’*) is the real part of X (¢’) and X, (e7%)

is j times the imaginary part of X (e’*).
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(d) Using Parseval’s result, the energy of x|n] is

E_.c = i |X(ejw)|2dw
2w ) _x
1 [T _ _ _ | | |
= o [ X&)+ 1Xal) 2 + Xe( ) X5 () + X2 () Xo()] o
1 [7 . y
= oo | [Xe(d)P +1Xo(¢)?] duw
= FEie+Fs:o

where the last two terms correspond to the energy of the even and odd components of z[n]. This is because
the integral of the cross terms is zero.
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Exercise 7

Convolution sum and product of polynomials

The convolution sum can be seen as a way to compute the coefficients of the product of polynomials.
This is because

(a)

[x+y][n] & X@)Y () & X(E?)Y(E®)

Let X(z) =1+2z"1+4+3z72 and Y(z) =z~ 2 + 4z 3 if x[n] = 18[n] + 28[n — 1] + 38[n — 2] and
yIn] = 18|n — 2] + 48|n — 3] are sequences formed by the coefficients of the polynomials. Compute
the convolution sum [x % y|[n] and compare it to the coefficients of the polynomial Z(z) = X(z)Y (),
or Z(el?) = X(el?)Y (e}?).

Suppose that the transfer function of a discrete-time system is

Wiz _ .
H(z)=L=3zz+22+2z 1,372
Vi(z)

and that it is known that the input is v[n] = u|n] — u|n — 3]. Use the connection between the product
of the polynomials and the convolution sum to find the output w[n] of the system.
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answer

Pr. 10.19 (a) The convolution sum is given

n

2[n] =) alklyln — k]
k=0
z[0] =z[0]y[0] =1 x0=0

z[1] = z[0ly[1] + z[1]y[0] =1 x0+2x2=10

z[2] = z[0]y[2] + z[1]y[1] + z[2]y[0] =1 x1+04+0=1

z[3] = z[0]y[3] + z[1]y[2] + z[2]y[l] + z[3]y[0] =1 x4 +2x1+0+0=6

z[4] = z[0ly[4] + z[1]y[3] + =[2]y[2] + z[3|y[1] + z[4]y[0] =1 x0+2x4+3 x1+0+0=11

2[5] = z[0]y[5] + z[1]y[4] + z[2]y[3] + z[3]y[2] + z[4]y[1] + z[5]y[0] =1 X 0+ 2 x 0+ 3 x4+ 0+0+ 0 = 12
z[n] =0 n>>5

or z[n] = 18[n — 2] + 66[n — 3] + 116[n — 4] + 126[n — 5]. Multiplying the polynomials X (z) by Y (z) we
get

Z(z) =040z +1224+(2+4)2 2 +(3+8)z " +122 % =22 +62* + 1127 +12:7°

which is the Z-transform of the above z[n| found by convolution.

26-Dec-17 14 dtft exercises 18



Exercises Ch.11 DTFT

(b) The Z-transform of v[n] is V(z) = 1 + z~! + 22 so that

W(z)=(3822+22+22"1+3272)V(2) =322 +52+5+42~ 1 + 5272+ 5273 + 324
so that

w(n] = 38[n + 2] + 58[n + 1] + 56[n] + 46[n — 1] + 58[n — 2] + 56[n — 3] + 36[n — 4]
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